


] 

l 







NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

TIIESIS 
5J521XSI< 

A COMPUTATIONAL COMPARISON OF THE PRIMAL 
SIMPLEX AND RELAXATION ALGORITHMS FOR 

SOLVING MINIMUM COST FLOW NETWORKS 

by 

Michael B. Sagaser 
I 0 J 

March 1989 

Thesis Advisor: R. Kevin Wood 

Approved for public release; distribution is unlimited 

T242320 





J nclassified 
:ecuntv aSS! !CatiOn 0 IS page Cl 'fi f th' 

REPORT DOCUMENTATION PAGE 
a Report Security Classification Unclassified 1 b Restrictive Markings 

a Security Classification Authority 3 Distribution Availability of Report 

b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited. 
Performing Or~anization Report Number(s) 5 Monitoring Organization Report Number(s) 

a N arne of Performing Organization 16b Office Symbol 7a Name of Monitoring Organization 
~aval Postgraduate School (If Applicable) 36 Naval Postgraduate School 
c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code) 
vionterey, CA 93943-5000 Monterey, CA 93943-5000 
a Name of Funding/Sponsoring Organization 18b Office Symbol 9 Procurement Instrument Identification Number 

(If Applicable) 
c Address (city. state, and ZIP code) 1 0 Source of Funding Numbers 

Program Element Number I Project No I Task No I Work Unit Accession No 

1 Title (Include Security Classification) A Computational Comparison of the Primal Simplex and Relaxation 
\lgorithms for Solving Minimum Cost Flow Networks 
2 Personal Author(s) Michael B. Sagaser 
3a Type of Report 113 b Time Covered 14 Date of Report (year, month,day) 115 Page Count 
viaster's Thesis From To March 1989 81 
6 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official 
>olicy or position of the Department of Defense or the U.S. Government. 
7 Cosati Codes 18 Subject Tenns (continue on reverse if necessary and identify by block number) 
;ield Group Subgroup Networks, Minimum Cost Flow Problems, Primal Simplex, Relaxation Method, 

Optimization, Lagrangian Relaxation. 

9. Abstract ( colf.tinue on reverse if necessary and identify by block number 
This thesis examines the relative computational efficiencies of two advanced network minimum cost flow 

>roblem solution methodologies: the primal simplex specialization to networks developed by Bradley, Brown and 
]raves (1977)--GNET and XNET, and a Lagrangian relaxation method developed by Berstekas and Tseng 
1988)--RELAX-II and RELAXT-II. Additionally, the relaxation method description is clarified and potential 
mplementation improvements are investigated. 

Research by Bertsekas and Tseng has shown the relaxation codes to be on the order of four to five times faster 
han the primal simplex codes. This thesis fails to duplicate those results. While the relaxation codes do perform 
·aster in many circumstances when solving purely random problems, the primal simplex codes are still closely 
:ompetitive. In particular, the primal simplex codes appear more efficient at solving capacitated transshipment 
>roblems in networks with an echelon structure, and in networks with many more sinks than sources. Primal 
implex codes also require al:xmt half the computer storage space of the relaxation codes. 

The research has produced compelling evidence that the relaxation algorithms can be further refined. All 
ndications appear to reinforce the desirability of prioritizing by absolute deficit the node selection process used in 
>oth relaxatioo codes. Further research is recommended. 

.0 Distribution/Availability of Abstract 

~ unclassified.lunlimited D same as report 

2a Name of R~ponsible Individual 
Cevin Wood 
>D FORM 1473, 84 MAR 

21 Abstract Security Classification 

D DTICusers Unclassified 
22b Telephone (Include Area code) 122c Office Symbol 
(408) 646-2523 55wd 

.. 
83 APR editiOn may be used until exhausted 

All other editions are obsolete 

.. 
secunty classificatiOn of th1s page 

Unclassified 



Approved for public release; distribution is unlimited. 

A Computational Comparison of the 
Primal Simplex and Relaxation Algorithms 
for Solving Minimum Cost Flow Networks 

by 

Michael Bernard Sagaser 
Captain, United States ~arine Corps 

B.S., University of Arizona 1978 

Submitted in partial fufillment of the requirements for 
the degree of 

MASTER OF SCIENCE IN OPERATIONS RESEARCH 

from the 

NAVAL POSTGRADUATE SCHOOL 
March 1989 



ABSTRACT 

This thesis examines the relative computational efficiencies of two advanced network 

minimum cost flow problem solution methodologies: the primal simplex specialization to 

networks developed by Bradley, Brown and Graves (1977)--GNET and XNET, and a 

Lagrangian relaxation method developed by Bertsekas and Tseng (1988)--RELAX-11 and 

RELAXT-11. Additionally, the relaxation method description is clarified and potential 

implementation improvements are investigated. 

Research by Bertsekas and Tseng has shown the relaxation codes to be on the order of 

four to five times faster than the primal simplex codes. This thesis fails to duplicate those 

results. While the relaxation codes do perform faster in many circumstances when solving 

purely random problems, the primal simplex codes are still closely competitive. In 

particular, the primal simplex codes appear more efficient at solving capacitated 

transshipment problems in networks with an echelon structure, and in networks with many 

more sinks than sources. Primal simplex codes also require about half the computer 

storage space of the relaxation codes. 

The resear(;h has produced compelling evidence that the relaxation algorithms can be 

,further refined. All indications appear to reinforce the desirability of prioritizing by 

., absolute deficit the node selection process used in both relaxation codes. Further research 

is recommended. 
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I. INTRODUCTION 

A. BACKGROUND 

A frequently solved problem in the mathematical programming community today is the 

minimum cost flow problem (MCFP) on a network. That this is so reflects both the 

intuitive appeal of representing certain practical problems in terms of a network of arcs and 

nodes, and the fact that minimum cost flow problem solution algorithms have advanced to 

the point where enormous problems can be solved efficiently. 

Many very practical situations can be represented in terms of flows through a system 

of arcs and nodes: products through a distribution network, water or petrochemicals 

through a pipe network, traffic through a road network, etc. Several quantitative fields 

depict phenomena in terms of a network flow model, including the U. S. military. 

Personnel assignment, ammunition distribution, optimal pack-out designs, inventory 

management , scheduling and planning are just some of the military uses of the network 

flow model (Rapp 1987, Staniec 1984 and Yorio 1988). Consequently, many military 

professionals have an interest in the effective formulation and the efficient solution of 

minimum cost flow problems. This thesis addresses the ability of modem MCFP solution 

algorithms to solve large scale problems by comparing two highly regarded approaches to 

solving the MCFP: the primal simplex and a newly introduced method known as the 

relaxation method. 

The MCFP is based on a network which is a directed graph with a set of nodes Nand 

a set of arcs A, each arc directed from its tail node to its head node, identified by a subscript 

a. Some nodes may have exogenous supply (a source node) or exogenous demand (a 

sink node). Nodes with neither exogenous supply or demand are pure transshipment 
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nodes. Associated with each node is a flow balance constraint which states that the flow of 

arcs into the node, including any exogenous supply, must equal the flow of arcs out of the 

node, including any exogenous demand. Each arc has associated with it a linear cost per 

unit flow ca, and upper and lower bounds to the flow allowed through the arc, ua and la 

respectively. The goal of the minimum cost network flow model is to determine a flow 

scheme that minimizes the total costs associated with shipping a specified product through 

the arcs of the network while ensuring that all node demands and arc flow limitations are 

met. If the flow passing through arc a. is xa, then the precise statement of the problem is: 

Mininrize L CaXa 
keA ( 1.1) 

Subject to L xa- L xa=b., iEN 
aeAwithtaili aeAwithheadi 1 (1.2) 

1 a s x a s u a• a. E A (1.3) 

where bi is the exogenous supply of node i. 

The MCFP can be solved as a general linear program with a constraint for each node 

and a variable for each arc. There are, however, far more efficient specializations of 

general linear programming algorithms that take advantage of the special structure of 

network problems. It is these specialized network algorithms that have pem1itted the 

mathematical programers of today to solve very large scale military and commercial 

problems efficiently. 

The transportation problem, proposed by Hitchcock (1941 ), is the first instance of a 

MCFP to become widely known. Hitchcock presented a solution process that closely 

resembles the primal simplex methodology. Dantzig (1951) showed that the transportation 
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problem is an instance of a linear program and that it can be solved by his simplex 

algorithm, and in fact developed a special variant of the simplex algorithm to solve 

transportation problems. Orden (1956) showed that the more general transshipment MCFP 

can be solved by these same methodologies. Several approaches to solving the MCFP that 

are not primal simplex were subsequently proposed: the out-of-kilter algorithm by 

Fulkerson (1961)~ the primal-dual by Ford and Fulkerson (1957)~ the dual by Balas and 

Hammer (1962). Several investigators continued to pursue the primal simplex method and 

developed efficient codes for solving large scale MCFPs. See Mulvey (197 4), Harris 

(1976) and Langley, Kennington and Shetty (1974). (Bradley, Brown and Graves 1977) 

By the late 1970s the most efficient algorithm for solving network flow problems was 

widely accepted to be the primal simplex specialization as exemplified by Bradley, Brown 

and Graves (1977). This primal simplex solution algorithm for networks was implemented 

in an efficient Fortran code called GNET~ it is described at length by its authors. Several 

variations of the basic GNET implementation are also investigated by Bradley et al., 

including a code called XNET, which specializes to networks with relatively many sinks 

compared to sources, and is known as the aggregated successors version of GNET. 

A new algorithm was introduced by Bertsekas and Tseng (1988) which does not 

belong to any previous category of network solution algorithms. This new method 

essentially applies what are generally considered to be nonlinear programming techniques 

to the dual of the network, a dual based on a Lagrangian relaxation of the MCFP, hence the 

name relaxation method. The implementation of the relaxation methodology exists today as 

a pair of Fortran codes, available from Bertsekas and Tseng, called RELAX-II and 

RELAXT-II. These two codes are reported by their authors to be between four and five 

times faster at solving randomly generated minimum cost flow problems than a primal 

simplex code written by Grigoriadis and Hsu (1988) called RNET. 
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B. PURPOSE 

This thesis primarily investigates the relative efficiencies of the primal simplex network 

codes, GNET and XNET, and the newer relaxation codes RELAX-II and RELAXT-II. 

Two measures of effectiveness will be considered: the amount of computer running time 

needed to attain an optimal solution and the total computer storage needed to implement the 

procedure. 

Additional goals of this thesis are to generalize and clarify the description of the 

relaxation methodology algorithms, and to study the particular algorithmic implementations 

to determine whether improvements can be made. 

The primal simplex code versions evaluated are the original, unmodified GNET/Depth 

and XNET as presented by Bradley, Brown and Graves in 1977. The relaxation codes 

evaluated are versions 2.1 of RELAX-II and RELAXT-II, as introduced in 1986. 

C. l\1ETHOD 

There is no widely accepted testing method to compare the relative merits of network 

solvers. The most often used technique is to generate a series of artificial test problems and 

then base performance decisions on the resulting solution times. One drawback to this 

approach is that the test problems that can be generated do not often share the same 

structural characteristics of "real-world" problems since they must usually be created 

randomly. Some codes, like GNET and XNET, are advertised to take advantage of the 

structure of problems formulated from real applications. Is it possible to generate problems 

that contain convincing real-world structure, or should a set of widely accepted real test 

problems be gathered? This question will be addressed, but not answered completely. 

To produce test problems for this thesis, a network problem generator called 

NETGEN, developed by Klingman, Napier and Stutz (1974), is used to generate a set of 

forty standard network problems which include transportation, assignment and capacitated 
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and uncapacitated transshipment networks. The NETGEN standard problems are used as a 

set of workable test problems by some, and are in fact the basis for the computational 

comparisons performed by Bertsekas and Tseng. They are used here to facilitate a 

comparison of results. 

Utilizing NETGEN is not an optimal approach to creating test problems. l'rETGEN 

randomly generates the distribution of supply and demand nodes, the arc costs, and the 

placement of arcs within the network. Real-world networks are often constructed over a 

particular geographical area, e.g., a series of ports receiving some supply which must be 

shipped to warehouses inland which in turn get transshipped to demand points further 

inland. Special relationships often exist between flow costs and the topology of the 

network, and flow rates may be limited by geographic constraints. In short, a purely 

random structure does not exist in real life. However, because of its wide distribution and 

familiarity to most mathematical programmers, 1\TETGEN has been the usual tool used to 

test new solution algorithms. 

Another less well known network test problem generator developed by Bon wit (1984) 

is used in this study. Called VSNET, this generator takes into account some of the general 

structure characteristics often visible in real-world problems, particularly the geographical 

echelon characteristic discussed above. Through extensive testing, Bonwit established that 

GNET consistently solved VSNET problems faster that NETGEN problems of comparable 

size, indicating a dependence of an algorithm's practical efficiency on network structure. 

The version of VSNET in use here does not produce assignment problems, however, only 

transportation and transshipment problems. 

This thesis uses both the NETGEN and VSNET problem generators to create test 

networks. NETGEN is chosen so that comparisons can be made with the computational 

experiments made by Bertsekas and Tseng. VSNET is chosen so that the effects of a 
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different problem structure can be observed. No real world problems are investigated 

because of the difficulty of reproducibility and acceptance among the wider mathematical 

programming community. This is not considered the best solution to the testing dilemma, 

but it is the only reasonable approach that could be made in view of the current state of 

algorithm testing technology. 

D. OVERVIEW 

Chapter II derives in detail the basic theory behind the relaxation methodology and 

presents the basic relaxation algorithm. In Chapter III the results of the computational 

comparison experiments are reported. Chapter IV suggests approaches to improving the 

relaxation method implementation by means of several data sorting schemes and other 

modifications to the implementing code. Conclusions are presented in Chapter V. 
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II. THE RELAXATION ALGORITHM 

This chapter develops the relaxation methodology for solving minimum cost flow 

network problems. The development generally follows that of Bertsekas and Tseng 

(1988), but concentrates only on the ordinary network flow problem, excluding the 

network with gains. All vector quantities are in bold type. 

The method essentially operates by ascending along a dual function based on the 

Lagrangian relaxation of the problem. In the past, Lagrangian relaxation has been widely 

used to solve large integer programming problems, where one can often observe a 

relatively simple problem complicated by a set of side constraints that can be partitioned out 

of the total set of constraints and placed in the objective function with some associated 

penalty cost (Fisher 1985). To implement this idea in network flow problems, all flow 

balance equations (1.2) are placed in the objective function in the relaxation methods. One 

can adapt what are normally considered nonlinear programming techniques, iteratively 

computing directional derivatives, to discover favorable directions of improvement in the 

dual. By further enforcing complementary slackness with the primal solution, an optimal 

feasible solution will ultimately be obtained. This is the essential characteristic of the 

method which will now be developed. 

A. THE MINIMUM COST FLOW PROBLEM 

The minimum cost flow problem (MCFP) described in Chapter I will be reiterated here 

in a form more suitable for deriving the relaxation algorithm. 

The MCFP on a network is based on a directed graph consisting of a set of nodes N 

and a set of arcs A, each arc being identified by the ordered pair of nodes (i,j). For 

simplicity, the development of the relaxation methodology in this chapter will assume that 
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only one arc connects any two nodes, although the computer implementation of the method 

allows for multiple arcs. For each arc (i,j) there exists a flow Xij and an associated cost per 

unit flow Cij- Let lij and Uij represent the lower and upper bounds on the flow of arc (i,j), 

respectively. (Occasionally, the notation a = (i,j) will be used to depict an arc for 

simplicity, e.g., xa, ua and la.) The basic MCFP problem is stated as 

Minimize 

Subject to 

z = I c .. X .. 
(i ,j)::: A 1 J 1 J 

I X . 
ml(m,i):::A m1 

I x. =-b. \lieN 
m l(i ,m)eA 1m 

I .. :::;; X .. :::;; u .. \f (i,j) E A' 
lJ 1J 1J 

which has optimal solution x* and optimal objective function value z*. 

(2.1) 

(2.2) 

(2.3) 

The above problem statement differs from that of Bertsekas and Tseng in that the right 

hand side of (2.2) has been explicitly included and not required to be to zero. This 

generalization is done to more closely align the statement of the relaxation method to the 

primal simplex method for those readers already familiar with the latter. Equation (2.2) is 

written as the negative of equation (1.2) so that the theoretical model developed here agrees 

with the actual Fortran implementation of RELAX-II and RELAXT-II. 

A Lagrangian function L(x,p) is created by relaxing the flow balance constraints (2.2) 

and placing them in the objective function, with an associated penalty for violation of the 

constraints. The penalty term is pj, called the price of node i. This new function is 

L(x, p) = I c .. x .. + I p .( I x . 
(i ,j):::A 1J 1J ieN 1 m~m,i)eA m1 

I X. +b.) 
ml(i ,m):::A 1 m 1 
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= L (c .. +p . -p .)x .. + L b .p .. 
(i,j)=A 1J J 1 1J ieN 1 1 (2.4) 

Let the Lagrangian dual function q(p) be defined as 

q(p) = min L(x,p). 
1 .. ~x .. ~u .. 

lJ 1 J lJ (2.5) 

The Lagrangian dual problem to the MCFP formulation given in equations (2.1) - (2.3) is 

then to maximize q(p), subject to no constraints on p. If p* is the value of the p vector that 

optimizes q(p) then q(p*)=z*, although an optimal x for q(p*) may not be feasible for the 

primal MCFP as written in equations (2.1)- (2.3). To assure a direct correspondence 

between the Lagrangian dual and the linear programming dual to MCFP (and thus assure 

that an optimal x for q(p*) is also primal-feasible) it is necessary to add an additional 

restriction to (2.5). Accordingly, define, for any price vector p, the arc (i,j) as being 

inactive if c .. + p.- p 0 > 0, 
1 J J 1 

c .. + p . - p . = 0, and 
1 J J 1 

balanced if 

active if c ij + p j - pi < 0. 

Also define within the context of (2.5) 

X .. = 1.. 
lJ lJ 

for inactive arcs, 

l. . ~x .. ~u .. 
lJ l J lJ 

for balanced arcs, and 

X .. = U . . for active arcs. 
lJ lJ 
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(2.9) 
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Equations (2.9) - (2.11) together constitute the additional restriction necessary to assure the 

direct correspondence between the Lagrangian and the linear programming duals; they are 

the complementary slackness conditions for the MCFP. Fisher (1985) discusses more 

completely the relationship between the Lagrangian and linear programming duals, and 

Rockafellar ( 1984) also addresses this relationship. 

It is useful to identify a scalar quantity that represents the difference between the flow 

into and out of node i, called the deficit of node i. This quantity, taking into account any 

supply or deficit (demand) already existing at the node, is 

d.= L X.- L X .-b. ViE N. 
1 ml(i,m)::A 1m ml(m,i)=A ml 1 

The relaxation method adopts what is essentially a nonlinear programming strategy to 

solve linear network problems. It does this by operating on the Lagrangian dual (2.5), 

attempting to find a price vector direction of change that will improve the value of q(p) by 

successively calculating a directional derivative and adjusting the vector p. If the 

opportunity arises aflow augmentation, defined in the next paragraph, is performed to 

reduce primal infeasibility. Since the algorithm always operates on the dual of the network, 

dual feasibility is maintained. Once a favorable direction has been found, changes to the 

price vector p and to the flow vector x are accomplished in such a way that complementary 

slackness (equations (2.9)- (2.11)) is always maintained. 

Given a vector pair (x,p) satisfying complementary slackness, a sequence of nodes 

{n1, n2, ... , nk} is aflow-augmenting path if the deficit ofn1 is strictly negative, the deficit 

of nk is strictly positive, and for m=1, 2, ... , k-1, either there exists a balanced arc a= 

(nm, nm+I) with xa < ua, or there exists a balanced arc a'= (nm+b nm) with xa' > la'· 
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Furthermore, if P+ is the set of nodes in a path directed from n 1 towards nk, and P- is the 

set of nodes in a path directed from nk towards n 1, the capacity of the path will be 

u =min{ dnk, -dnl, { (ua- Xa) I a in p+), {(xa' -la') I a' in p- }. 

Flow augmentation consists of forcing an additional amount of flow u along a path that 

starts at a node with negative deficit (surplus) and ends at a node with positive deficit. In 

this way the absolute deficit of the two extreme nodes on a flow-augmenting path will be 

reduced, while the deficits of the intervening nodes will be unaffected. 

The process of solving MCFP with the relaxation method begins by setting all flows in 

the network to zero (unless the user provides initial flow and price vectors that satisfies 

complementary slackness in an attempt to accelerate the solution process) so that the initial 

deficit for each node is simply its demand (positive deficit) or supply (negative deficit), as 

required by the deficit equation. Define Ci to be the ith unit vector associated with 

increasing the value of Pi, while all other components of p remain constant. Also define an 

initially empty set S that contains all nodes being considered for a price change. 

For the price vector existing at the beginning of each relaxation iteration, a node i with 

positive deficit is selected and placed in S. It is determined whether the dual function (2.5) 

can be improved by altering the price of node i by taking the directional derivative of the 

dual function in the -ei direction, at the current price vector. Why the decreasing price 

direction is appropriate for a node with positive deficit will be addressed in Section D of 

this chapter. If the dual function cannot be improved by decreasing Pi the algorithm then 

looks along balanced arcs for a node adjacent to S with a negative deficit. If such a node is 

found, flow can be "pushed" from the negative deficit node to node i, thus reducing the 

total absolute deficit of both node i and of the node that is found to have a negative deficit. 
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If a price adjustment is unfavorable, and there is no adjoining node with negative deficit, S 

is expanded by the addition of a node incident to node i, say node i'. Now it is determined 

whether the dual function can be improved by a simultaneous reduction of both Pi and Pi' 

by taking the directional derivative of the dual function, evaluated at the current price 

vector, in the -(ei + ei') direction. Again, if the price reduction turns out to be unfavorable, 

an attempt is made to find a node adjacent to S with negative deficit. If no flow can be 

pushed, another adjacent node is added to S, and so on. In practice, and by purposeful 

design, most price changes occur when S contains only one node (along a single coordinate 

direction) because a single node price adjustment is more computationally efficient than a 

multiple node price adjustment. 

The above iterative procedure will necessarily end when either the price vector has 

been adjusted or a flow has been pushed from some node with negative deficit to the 

starting node i, as demonstrated by the theorem below. The algorithm itself will terminate 

when x satisfies primal feasibility, i.e., the deficit of each node equals zero. Note that 

there is a parallel case in which a node with negative deficit is initially selected for 

membership inS. When this is attempted, the process remains the same as outlined above 

with the exception that one now looks for a price increase for the set of nodes in S, or a 

node with positive deficit to push flow to. 

Theorem: Given a flow and price vector (x,p), satisfying (2.9) - (2.11), and given 

that there exists at least one node with non-zero deficit, then it is possible to perform either 

a price adjustment or a flow augmentation on the network. 

Proof: This proof is essentially that given by Bertsekas (1985) and is illustrative of 

the relaxation methodology. 

Define the setS of scanned nodes to which price adjustments are to apply, and a set L 

of labeled nodes. After making both sets empty follow this procedure: 
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Step 1. Begin by picking some node i with positive deficit and placing it in S. (There 

is a parallel, symmetric negative deficit case that is not treated here.) 

Step 2. Create a set L consisting of all nodes m~ S such that there exists an arc (m,k) 

directed into S which is balanced and has Xmk < Umk, or there exists an arc (k,m) directed 

out of S which is balanced and has Xkffi > lkffi. 

Step 3. Select some node in L to bring into S. If a node in L with negative deficit has 

been found, stop. If a point is reached where all nodes in the network are either inS or all 

nodes in L have nonnegative deficit, stop. Otherwise, go to step 2. 

There are two possible terminations to this process. The first is that a node with 

negative deficit is found, in which case a flow-augmenting path has been found and the 

total network deficit Lldil can be reduced by 2u (twice the capacity of the flow-augmenting 

path). The second possibility is that every node in L has a nonnegative deficit. Let L' be 

the complement of L. Then L' must be nonempty since Lies di > 0, but LieN di = 0. 

Therefore, there must exist either an arc (k,m) with kE L and mEL' that is active (flow at 

Umk), or there must exist an arc (m,k) with kE L and mEL' that is inactive (flow at lkm). 

Let 8 be a scalar defined as 

8 = min {{- (c km + p m - p ~)l(k,m) active }, 

{(c lun + p m - p ~)I (k,m) inactive } } . (2.12) 

Set Pi =Pi- 8 for all nodes iE S. Since the (x,p') is still an integer vector pair satisfying 

complementary slackness, changing (x,p) to (x,p') is in fact carrying out a valid price 

adjusnnent. QED. 
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B . THE DUAL ASCENT STEP 

The goal of the dual ascent step in the relaxation algorithm is to improve (increase) the 

value of the dual function (2.5) by adjusting the price of a selected set of nodes, or in some 

cases, a single node. As indicated, the algorithm begins by selecting a node with deficit, 

say positive, and determining whether q(p) can be improved by reducing the price of the 

selected node. Specifically, the directional derivative of (2.5) is calculated in the direction 

of decreasing price for the selected node(s). If the derivative (evaluated at the current price 

vector) is favorable, then it is advantageous to decrease the price of the selected node(s). 

The negative deficit case is analogous and will be treated separately. The actual 

computation of the directional derivative is done incrementally in the implementation of the 

relaxation algorithm by means of an identity derived below. 

Given that a price change has been found to be favorable for some set of nodes S, the 

step size 8 in (2.12) corresponds to the first break point of the piecewise linear dual 

function along some ascent direction. The first break point reached in this manner may or 

may not be located at the maximum value of the dual function along the direction implied by 

the nodes currently in S. Bertsekas and Tseng report that it is possible to find an optimal 

price adjustment stepsize that maximizes the value of the dual function in the chosen ascent 

direction. The technique for doing this is quite simple and involves testing the sign of the 

directional derivative of the dual function at successive break points along the ascent 

direction. If the sign continues to indicate that more can be gained by further price change, 

then the price is adjusted accordingly and the directional derivative is again evaluated. This 

process is called a line search and is in fact implemented in the codes of both RELAX-II 

and RELAXT-II. 

The particular case in which a nodes with positive (negative) deficit comprises S and 

the relaxation algorithm immediately finds a favorable directional derivative, before any 

additional nodes are added to S, is called a single node iteration. In this case Ps, S={ s} 
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will be decreased (increased) by 8, perhaps repeatedly via a line search, and the iteration 

will terminate. The only price to change will have been that of node s. The associated 

change in flow will reduce the absolute value of the deficit of node s at the expense of 

possibly increasing the absolute of the deficit of neighboring ncx:les. 

1 . The Decreasing Price Directional Derivative 

The specific problem here is to determine the directional derivative of (2.5) in the 

decreasing price direction for the selected ncx:les, given that the initially selected node has a 

positive deficit. In this case it is expected that the price of any nodes inS will be reduced if 

the slope of the dual function at the current price vector is sloped negatively along the 

coordinate corresponding to a reduction in price for nodes inS, thus improving the value of 

the dual function. Recall that the directional derivative will have to be calculated once each 

time another node is added to S, the set under consideration for a price reduction. The 

general expression for a directional derivative in the direction of a vector w is 

w c (p) = min 
+ 

t--) 0 
2: 

L(x, p + tw) - L(x, p) 

(i ,j)= A 
(2.13) 

The direction of initial interest is Wi = -1 for iE S and Wi = 0 for i~ S, where S is a 

connected set of nodes, all of which have nonnegative deficit. This directional derivative 

will be denoted C-s(P ). The following paragraphs develop an expression which is used to 

compute this directional derivative in the relaxation ccx:les. 

In evaluating C-s(p), we note that there will be 2(1NI+IAI) terms in numerator of 

(2.13). All those terms associated with arcs between pairs of nodes inS, or between pairs 

of nodes not in S will cancel, as will all the terms associated with nodes not in S. Thus, 

only those terms associated with arcs crossing the boundary of S and those terms 

associated with nodes in S need to be considered. The boundary arcs fall into one of six 

15 



categories: either they are incident into S and active, balanced or inactive, or the are 

incident out of S and active, balanced or inactive. For each case listed above the price of 

the nodes in S will be adjusted by t as per (2.13) and the resulting expression evaluated. 

First consider any arcs (i,j) inbound to S. Since we wish to test the 

favorableness of reducing price, reduce the price of node j by t. Referring to (2.5), if the 

arc is inactive then Cij + Pj- Pi is positive and, since L(x,p) is to be minimized, the flow on 

arc (i,j) must be at its lower bound. Accordingly, fort sufficiently small 

[(c .. + (p.- t) - p .) 1..- (c .. + p. - p .) 1 .. ]/t = -1 ... 
IJ J 1 1J 1J J 1 1J 1J (2.14) 

Likewise, for an active arc (i,j), Cij + Pj - Pi is negative, so the flow on (i,j) must be at its 

upper bound to minimize L(x,p ), yielding 

[ ( c .. + ( p . - t) - p . ) u .. - ( c .. + p . - p . ) u .. ] It = - u ... 
IJ J I IJ IJ J I 1J 1J (2.15) 

If arc (i,j) is balanced then Cij + Pj -Pi= 0, but reducing Pj by any amount will drive the 

quantity negative. In this case the flow of (i,j) must be set to its upper bound, or 

[(c .. + (p.- t) -p.)u .. -(c .. +p.-p.)x .. ]/t =-u ... 
I J J I 1J 1 J J 1 I J 1 J (2.16) 

Now consider any arcs (i,j) that are outbound from S. Reduce the price of node 

i by t. Again, by referring to (2.5) it can be seen that for inactive arcs with Cij + Pj - Pi 

positive, the flow on (i,j) is at its lower bound, which means that 

[(c .. + (p. - t) - p.) 1..- (c .. + p. - p.) 1 .. ]/t = - 1 ... 
IJ J I 1J IJ J I IJ IJ (2.17) 
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For any active arc (i,j), Cij + Pj- Pi is negative, requiring the flow on (i,j) to be at 

its upper bound, or 

[ (c .. + p . - (p . - t)) u . . - (c .. + p . - p . ) u .. ] It = u ... 
1 J J 1 IJ 1 J J 1 1 J 1 J (2.18) 

If arc (i,j) is balanced, Cij + Pj - Pi = 0, but decreasing Pi by any amount will 

drive it positive, meaning that the flow Xij must be set to its lower bound, giving 

[(c .. + p. - (p. - t )) 1..- (c .. + p. - p. )x .. ] It = 1. .. 
1 J J 1 1 J IJ J 1 IJ 1 J (2.19) 

Finally, the terms of C-s (p) associated with the nodes In S yield 

( L. b. (p . - t) - L. b. p . ) It = - L. b .. 
i E S l l iE S 1 l i E S l (2.20) 

Summing (2.14) - (2.20) gives an expression for the directional derivative of 

(2.5) in the decreasing price direction for the direction implied by the selected nodes in S is 

Cs(P) = L. 
i E S jE: S 

u . . + L. 
IJ ieS,je:S 

(i ,j) Active ( i , j) Balanced 

L. u .. - L. 
ie: s ,jE s 1 J i e s je s 
(i ,j) Active (i ,j) Balanced 

1..+ L. 1.. 
1 J . S . S IJ IE ,_Je 

(i ,j) Inactive 

u .. - L. 1 .. - L. b. 
•J ie S,jE s IJ iE S l 

(i ,j) Inactive 

which can be further simplified by adding and subtracting the term 
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L. 
ie S ,jE S 

(i ,j) Balanced 

X . . - L 
1J i E S ,j!l S 

( i , j) Balanced 

X . . 
1J 

to the right hand side of (2.21). After arranging terms, the final identity for the directional 

derivative is 

(x .. - 1 . . ) - L 
1 J 1J i ~ S ,jE S 

(u . . - x . . ) , 
1 J 1 J 

( i , j) Balanced ( i ,j) Balanced (2.22) 

where 

d
5

= 2. x .. - 2. x . . - :Lb . 
ieS,jES 1J iESjeS 1J iES 1 

is the total deficit of S. 

2. The Increasing Price Directional Derivative 

The same approach is used for the increasing price derivative as is used to 

develop (2.22). Here the initially selected node to enterS has a negative deficit and it is 

desired to determine whether (2.5) can be improved by increasing the price of the nodes in 

S, i.e., find out if the slope of the dual function at the selected price vector is positive. 

Again, for inbound arcs (i,j), increasing the price of node j by t (and using the same 

arguments) gives 

[(c .. + p.- (p. + t))u .. - (c .. + p . - p.)u .. ]/t = -u .. 
1J J 1 1J 1J J 1 1J 1J (2.23) 
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if (i,j) is active, 

[(c .. + p.- (p . + t))u .. - (c .. + p . - p .)x .. ]/t = -u .. 
1 J J 1 1J 1 J J 1 1 J 1 J (2.24) 

if (i,j) is balanced, 

[(c .. + p.- (p. + t))l .. - (c .. + p.- p.)l..] /t = -1 .. 
1 J J 1 1 J 1J J 1 1 J 1 J (2.25) 

if (i,j) is inactive, while increasing the price of node i for outbound arcs (i,j) gives 

[(c .. + (p. + t)- p.)u .. - (c .. + p.- p.)u .. ]/t = u .. 
1J J 1 1J 1J J 1 1J 1J (2.26) 

for (i,j) active, 

[(c .. + (p. + t)- p.)l .. - (c .. + p.- p.)x .. ]/t = 1 .. 
1J J 1 1J 1J J 1 1J 1J (2.27) 

for (i,j) balanced, 

[(c .. + (p. + t)- p.)l .. - (c .. + p.- p.)l .. ]/t = 1 .. 
1 J J 1 1 J 1J J 1 1 J 1 J (2.28) 

for (i,j) inactive. As before, the terms in S yield 

(Ib.(p.+t)- I.b.p.)/t= :Lb .. 
i E S 1 1 i E S 1 1 iE S 1 (2.29) 
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Summing (2.23) - (2.29) gives an expression for the directional derivative of 

(2.5) in the decreasing price direction for the nodes in S, 

C+(p)= I. u .. + I. 
S i e S ,je S IJ i e S je S 

(i ,j) Active (i ,j) Balanced 

I. u .. - I. 
ieS,jeS IJ ieS,jeS 

(i ,j) Active (i ,j) Balanced 

I..+ I. 
IJ . S . S Ie ,JE 

(i ,j) Inactive 

1. . + I.b . 
IJ i E S I 

u . . - I. 1 .. 
IJ . S . S IJ IE ,je 

(i ,j) Inactive 

which can be simplified by adding and subtracting 

I. 
ie S,je S 

(i ,j )Bala.'lred 

X . 
XJ 

I. 
ie s ,je s 
(i ,j )Balanced 

X .. 
IJ 

to the right hand side of (2.30) and rearranging terms which gives 

(2.30) 

C~(p) = I. 
ie S,je S 

(x .. - u . . ) - I. 
IJ IJ i e S je S 

(1. . - X .. ) - d S' 
IJ IJ 

(i ,j ) Balanced (i ,j) Balanced (2.31 ) 

where ds is the total deficit of S. 

C. THE BASIC RELAXATION ALGORITHM 

Each relaxation iteration begins with a flow and price vector satisfying complementary 

slackness. If starting flow and price vectors have not been provided by the user, the 

algorithm sets them to zero. Each iteration will produce another flow and price vector also 

satisfying complementary slackness. The process will terminate when no node with a 

deficit can be found. The algorithm presented below is from Bertsekas and Tseng (1988) 
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and treats only the case where nodes with positive deficits are selected for inclusion in S. 

The parallel case for selecting nodes with negative deficits is similar. 

Step I. Chose a node s, with with a positive deficit d5• If there are none, terminate 

the algorithm. Set S=0 and L={ s}. 

Step 2. Choose any kEL and let S=S+{k}, L=L-{k}. 

Step 3. For each arc (k,m) directed out of S, if Xkm > lkm let L=L+{m}. For each arc 

(m,k) directed into S, ifxm1c < Umk let L=L+{m}. Compute C-s(p) and, if positive, go to 

step 5. If any node m'E L has negative deficit, go to step 4. Otherwise, go to step 2. 

Step 4. Flow Augmentation: A flow augmenting path from m' to s has been found . 

Identify arcs directed from s tom' as belonging to set P-, and arcs directed from m' to s as 

belonging to set p+, Compute 

U =min { d5, -dm•, { (Ukn - Xkn) I (k,n)E p+}, { (Xkn - lkn) I (k,n)E p- } } . 

Let Xkn = Xkn + u, V arcs (k,n)E P+, and let Xkn = Xkn- u V arcs (k,n)E P-. Go to step 1. 

Step 5. Price Adjustment. Set 

and set 

8 = min { { (Pk - Pm - Ckm) I (k,m) is outbound from S and active}, 

{ (cmk- Pm + Pk) I (m,k) is inbound to S and inactive}} 

Xkm = lkm' for all balanced arcs (m,k) outbound from S, 

Xmk = Umk' for all balanced arcs (m,k) inbound to S. 
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Set Pk = Pk - 8, '\1 ke S. Go to step 1. 

The relaxation iteration will terminate either when a flow augmentation (step 4) or a 

coordinate ascent (step 5) has occurred. The procedure is well defined since when one 

returns to step 2 from step 3 there is always one node in L that is not inS. When S:t0 and 

L=0 it must be that there are no balanced arcs crossing the boundary of S. Thus it follows 

from (2.22) that 

c5 < p) = L. d k > o; 
keS 

the procedure will therefore switch from step 3 to step 5 rather than switch to step 2 

because an ascent direction has been found. 

It is simple to show show that the relaxation procedure converges if the starting flow 

and price vectors are both integer. In this case 8 is also an integer and the dual will be 

increased by an integer amount each time step 5 is performed. When a flow adjustment 

occurs in step 4 the dual cost does not change, and if the initial flow vector is integer then 

all subsequent flows will be integer since u is always be integer. In view of these 

arguments, there can only be a fmite number iterations between successive reductions in the 

dual cost so that the algorithm will terminate finitely with an optimal flow and price vector. 

If the starting flow and price vectors are not integer, the convergence analysis is far more 

complex and it is necessary to introduce some modifications to the basic relaxation 

methodology to assure convergence to near optimal solution. The essential elements of the 

proof are developed by Bertsekas and Tseng (1988) and Tseng (1986). 
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D. A NUMERICAL EXAMPLE 

To illustrate how a typical dual ascent step would proceed, the following numerical 

example is offered. Suppose we have a five node, four arc network as shown in Figure 

2.1 (a). The costs and capacities are given in an edge list as follows: 

Arc Cost Upper Bound 

(l,i) 10 20 

(i,2) 3 10 

(3,i) 0 20 

(i,4) 0 30 

All node prices are assumed to begin at the values shown in Figure 2.1(a). To determine 

the flow levels of each arc at the beginning of this problem, apply definitions (2.6)- (2.11) 

as follows: 

Arc (1,i) has Cli +Pi- PI= 10 + 25- 5 = 30: (l,i) is inactive, therefore Xli = 0. 

Arc (i,2) has Ci2 + P2- Pi= 3 + 10- 25 = -12: (i,2) is active, therefore Xi2 = 10. 

Arc (3,i) has Ci3 +Pi- PI = 0 + 25 - 15 = 10: (3,i) is inactive, therefore X3i = 0. 

Arc (4,i) has Ci4 + P4- Pi= 0 + 20- 25 = -5: (4,i) is active, therefore X4i = 30. 

0') 25 ------------ 0') 20 Q) Q) 
0') 20 
Q) 

u 20 ---------- - u 
I.... 

3 
I.... 15 

0.. 15 ·-·---- 0.. 

u 
·c 15 
0.. 

Q) 10 (I) 10 
"'0 "'0 

Q) 10 "'0 
0 5 ----- -- 1 

0 5 z z 0 z 5 

(a) (b) (c) 

Figure 2.1. Illustration for the Numerical Example. 

The flow situation is such that node i has net deficit of positive 40 (from the deficit 

equation), so we are now interested to discover whether the dual function can be improved 
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by means of a reduction in Pi· To determine this we turn to the expression for C-s(p), 

equation (2.22). Since there are no balanced arcs at present, the directional derivative has a 

value of 40, indicating that Pi can be profitably reduced. Next, we need to decide just how 

far to reduce Pi to reach the first break point in the piecewise linear dual function. Applying 

step 5 of the relaxation algorithm, we see that the value of 8 can be computed by 

8 = min { { (Pk - Pm - Ckm) I (k,m) is outbound from S and active}, 

{ (cmk- Pm + p0 I (m,k) is inbound to Sand inactive}} 

which yields OI=min{30,12,10,5}=5, taking the arcs in the order in which flows are 

computed above. Finishing step 5 we reduce Pi by 5 to 20 and must now decide how to 

adjust the flows. To determine the flow status of the arcs we again apply definitions (2.6)-

(2.11) as follows: 

Arc (l,i) has Cli +Pi- Pl = 10 + 20- 5 = 25: (l,i) is inactive, therefore Xli = 0. 

Arc (i,2) has Ci2 + P2- Pi= 2 + 10- 20 = -7: (i,2) is active, therefore Xi2 = 10. 

Arc (3,i) has C3i +Pi- P3 = 0 + 20- 10 = 5: (3,i) is inactive, therefore X3i = 0. 

Arc (i,4) has Ci4 + P4 -Pi= 0 + 20- 20 = 0: (i,4) is balanced. 

Since arc (i,4) is now balanced, we complete step 5 by setting Xi4 = 0. Note that the 

starting value of the dual function, obtained by using (2.4) and (2.5), can be computed as 

(30)0+(-12) 10+(10)0+(-5)30 = -270 (point a in Figure 2.2) while the new value of the dual 

function, after applying the price change, is (25)0+( -7) 10+(5)0+(0)0 = -70 (point b in 

Figure 2.2), indicating a net increase for the iteration. 
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q(p) 

-20 

-70 

-270 ---------------------------·--------~ -------

5 10 

Figure 2.2. The Dual Function Surface. 
The price of node i begins at a value of 25. Reduction by OJ 
increases the value of the dual function from a to b. At b a line 
search is instituted and a further decrease of Pi is found to be 

advantageous. After a second reduction of Pi of Oz, the dual 
function is further improved by moving from b to c. At c 
c-s(p)<O, ending the relaxation iteration. 

So far, a single node iteration has been successfully carried out since only the single 

price Pi has been reduced. To continue looking for favorable price reductions at this point 

constitutes the employment of the line search technique addressed earlier. To illustrate the 

line search we continue by determining whether a further reduction of Pi is favorable by 

computing C·s(P) for the current flow and price vectors. Employing equation (2.22) we 

see that c·s(p)=10, indicating that a further reduction of Pi is warranted. The total 

allowable reduction is Oz=min{25,7,5}=5, so that the value of pi is lowered from 20 to 15. 

The new flow situation is: 

Arc (l,i) has CJi +Pi- PI= 10 + 15- 5 = 20: (l,i) is inactive, therefore XIi = 0. 

Arc (i,2) has Ci2 + P2- Pi= 3 + 10- 15 = -2: (i,2) is active, therefore Xi2 = 10. 

Arc (3,i) has Ci3 +Pi- PI= 0 + 15- 15 = 0: (3,i) balanced. 

Arc (i,4) has Ci4 + P4- Pi= 0 + 20- 15 = 5: (i,4) is inactive, therefore Xi4 = 0. 
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The above flow picture has arc (3,i) balanced, we therefore complete the iteration by setting 

X3i = 20, its upper bound. At the end of this second price adjustment we note that the dual 

function now has value (20)0+(-2)10+(0)20+(5)0 = -20 (point (c) in Figure 2.2). Finally, 

the directional derivative C-s(P) now has value -10, since arc (3,i) is now providing 20 

units of flow into node i while arc (i,2) is still at 10 units of flow out of node i. This 

terminates the relaxation iteration for node i. 
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III. COMPUTATIONAL COMPARISON OF PRIMAL SIMPLEX 

AND RELAXATION METHODOLOGIES 

This chapter reports on the outcome of several computational efficiency comparisons 

between the relaxation and the primal simplex methodologies for solving minimum cost 

network flow problems. The relaxation methodology is represented by two 

implementations: version 2.1 of RELAX-II which is a straight implementation of the 

algorithm presented at the end of the previous chapter, and version 2.1 of RELAXT-II, 

which is different in that it maintains a separate dynamic data structure for all currently 

known balanced arcs. The primal simplex methodology is represented by the original 

version of GNET/Depth and XNET, a refinement of GNET/Depth that specializes to 

networks with relatively more sinks than sources, also known as the aggregated successors 

version of GNET; both are described by Bradley, Brown and Graves (1977). 

A. DOCUMENTATION AND STORAGE REQUIREMENTS 

Both relaxation codes are easily adapted from the VAX Fortran implementation that is 

available from Bertsekas and Tseng to VS Fortran on an IBM 3033AP computer. A minor 

translation chore of eliminating several DO WHILE loops and reducing a few variable 

names to be less than six characters in length is required because these two VAX Fortran 

features are not available in VS Fortran. Having done this, the user is required to write a 

small controlling program to read the network data, call the relaxation subroutines and 

produce the desired output files. 

The documentation that is made available with the relaxation codes is adequate to allow 

a user to employ the codes to solve network problems in a straightforward fashion, but is 

not useful for understanding the functional details of the algorithms. Broad explanations 
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are provided in a theoretical framework , but one is left wondering about many 

implementation details. Consequently, it is necessary to puzzle out many important design 

features, such as node selection procedures, directional derivative calculations and multiple 

node iteration termination procedures. These and other items are important implementation 

aspects of the relaxation algorithms, a detailed description of which would greatly improve 

the employability of the algorithms. 

Program storage requirements for RELAX-II are 18,516 bytes using 1129 source 

statements, when compiled under VS Fortran optimization level 3, while RELAXT-II 

requires 23,128 bytes and uses 1474 source statements. This compares unfavorably with 

GNET which requires 10,084 bytes of storage and uses 475 source statements and XNET 

which uses 11,025 bytes and 495 statements. Additionally, the dynamic storage 

requirements for both relaxation codes is considerably higher that for the primal simplex 

codes as can be seen in Table 3.1. These storage requirements differ from those reported 

by Bertsekas and Tseng (1988), who assert that RELAX-II uses 7.5 arc length and 7 node 

length arrays and that RELAXT-II uses 9.5 arc length and 9 node length arrays. 

TABLE 3.1. MAJOR ARRAY SIZES 

Four Byte lnteoer Arrays One Byte Logical 
QxE Arc Lenoth Node Lenoth Node Lenoth Arrays 

RELAX-II 9 1 0 1 
RELAXT-11 1 2 1 0 1 
~ 3 9 0 
XNET 3 1 0 0 

B . STANDARD NETGEN PROBLEMS 

The forty standard NETGEN network problems developed by Klingman, Napier and 

Stutz (1974) are generated and run for each solver being evaluated: RELAX, RELAXT-II, 

GNET and XNET. The same parameters are used to generate problems for this thesis as 
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are used in the original NETGEN paper so that the test problems can be duplicated exactly 

by generating them as prescribed by the NETGEN authors. All solutions agreed with those 

obtained in the original NETGEN paper except for two: NETGEN-28 and NETGEN-29. 

The published solutions to these two problems are 122,582,531 and 105,050,119 

respectively, while all solver codes in this investigation yield solutions of 122,582,559 and 

105,050, 170--a small difference that is not considered important to the overall test. 

Only the actual solution processes for each algorithm are measured for run-time 

efficiency; data input time, data structure set-up time, and solution output time are not 

considered in the time measurements taken. All time measurements are obtained on an ffiM 

3033AP computer in time share using CMS version 5.0 and compiled by VS FORTRAN 

version 1.4.1 under optimization level 3. 

Table A.1 contains the results of the standard NETGEN problem set tests. Table A.1 

contains the results of the standard NETGEN problem set test. Figures 3.1 and 3.2 

summarize the results. NETGEN 1-10 are 200 and 300 node transportation problems. 

NETGEN 11-15 are 400 node assignment problems. NETGEN 16-27 are 400 node 

capacitated transshipment problems broken down as follows: 16-19 have 20% of arcs 

capacitated, 20-23 have 40% of arcs capacitated, and 24-27 have 80% of arcs capacitated 

(see Table A.1 for a breakdown of the specific running times). NETGEN 28-35 are 

uncapacitated transshipment problems, the first four of 1000 nodes and the last four of 

1500 nodes. NETGEN 36-40 are all large transshipment problems with the first three 

uncapacitated and the last two very slightly capacitated (with .7% of arcs capacitated). All 

have many more sinks than sources, and all contain both pure sources and sinks and 

transshipment sources and sinks of various numbers. 
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Figure 3.1. Running Times for the First 35 NETGEN Problems 
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Figure 3.2. Running Times for NETGEN 36-40 
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It can be seen that the performance of the relaxation codes is slightly superior to the 

primal simplex codes for transportation (NETGEN 1-1 0) and assignment (NETGEN 11-

15) problems, while they are clearly faster in uncapacitated transshipment (l\TETGEN 28-

35) problems. Both primal simplex codes appear to be competitive when solving 

capacitated transshipment (NETGEN 16-27.) problems. 

It is interesting to point out that these results are far more favorable to the primal 

simplex codes than those conveyed by Bertsekas (1985), and Bertsekas and Tseng (1988), 

who reported a substantial superiority of the relaxation codes in transportation problems (a 

factor of three) and assignment problems (a factor of four). The RELAXT-II codes are 

superior to all other codes when solving problems in the NETGEN problem set, except that 

GNET runs are slightly better for lightly capacitated transshipment (NETGEN 16-27) 

problems. As might be expected, Xl\TET is closely competitive on the large l\TETGEN 

problems shown in Figure 3.2, which all contain, to a greater extent than the other 

NETGEN problems, many more sinks than sources. 

C. THE VSNET PROBLEl\1 SET 

Additional test problems are generated using a network generator called VSNET 

developed by Bonwit (1984). VSl\cT constructs a network as a series of echelons, with 

both the number of nodes in each echelon and the total number of echelons specified by the 

user, upon which a random set of arcs is placed. Six standard test problems are 

constructed for use throughout this thesis, three capacitated and three uncapacitated. Table 

3.2 shows the parameters used to generate test problems using VSNET. As with all of the 

NETGEN problems, cost range is kept constant at between 1 and 100. 

Table A.2 contains the results obtained from the VSNET problem set, and Figures 3.3 

and 3.4 summarize these results. 
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TABLE 3.2. THE VSNET PROBLEM SET 

VSNET# Number Number Num. of Total Num. of 
of Nodes of Arcs Echelons Supply Sources 

Capacitated Transshipmemnt Networks 
1 500 10000 3 100000 100 
2 1000 20000 5 200000 125 
3 5000 30000 6 1000000 400 

Uncapacitated Transshipment Netwoks 
4 500 10000 3 100000 100 
5 1000 18000 5 250000 100 
6 5000 30000 6 1000000 400 
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Figure 3.3. Capacitated VSNET Problems 
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The primal simplex codes can be seen to be relatively more efficient when solving 

VSNET capacitated transshipment networks (Figure 3.3). This is attributed to the fact that 

these networks are constructed with a structure that is found to be advantageous to the 

primal simplex codes by Bonwit; both GNET and XNET contain pricing heuristics that 

take advantage of the "real-world" structure that VSNET tries to duplicate. (Note that 

RELAXT-II does not run for VSNET-3--it produces a solution value of zero. A failure to 
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run satisfactorily turns out to be a recurring problem with RELAXT-II in several other test 

problems as well.) 

For the uncapacitated transshipment VSNET problems (Figure 3.4), RELAXT-ll is 

clearly most efficient, but GNET and XNET are closely competitive with RELAX-IT. The 

relative improvement in the efficiencies of the primal simplex codes for these VSNET 

uncapacitated problems (as opposed to the NETGEN-generated problems) is most likely 

due to the structural differences of the two varieties of test networks. One sees the effect of 

the design features of GNET and XNET that take advantage of inherent structure. 
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Figure 3.4. Uncapacitated VSNET Problems 

Inspection of Table 3.2 reveals that VSNET 1-6 have more sources than sinks. This 

structure is considered by some to be unrealistic. The practical problems most often 

encountered by mathematical programmers in military and commercial problems tend to 

have many more sinks than sources and to expand as one moves into the echelon, e.g., a 

few production plants sending products to a few more warehouses which in tum send 

products to many more customers. This expanding echelon structure is fairly common in 
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practice and GNET and XNET are designed to take advantage of it. Note that both primal 

simplex codes do exhibit relative performance improvements even though the expanding 

echelon structure is not used in VSNET 1-6. 

As an additional experiment, six more VSNET problems are generated that have all of 

the same basic parameters as VSNET 1-6, but with an expanding echelon structure 

imposed. Table 3.3 contains the running times for these problems which Figure 3.5 

summarizes. Interestingly, the primal simplex codes are even more efficient relative to the 

relaxation codes than is the case in the original VSNET problem set, and in fact run 

competitively in two out of three uncapacitated transshipment networks. The inexorable 

deduction here is that structure is important to a solution algorithm. 

TABLE 3.3. EXPANDING ECHELON VSNET PROBLEMS 

VSNET# Num. of Num. of RELAX-II RELAXT-11 G'JET XNEr 
Equiv. Sources Sinks 

Capacitated Transship_ment Networks 
1 1 0 390 3.16 1 .95 0.81 0.76 
2 1 0 465 9.48 DNR 2.38 2.01 
3 5 1945 12.27 6.86 19.92 6.45 

Uncapacitated Transshi~ ment Networks 
4 1 0 390 9.03 7.49 4.02 5.02 
5 1 0 465 13.51 DNR 13.20 15.86 
6 5 1945 31 .22 DNR 57.94 43.45 

DNR: Did Not Run 
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D. VARIATIONS OF THE NETGEN PROBLEMS 

Several variations of network test problems are generated using NETGEN to 

investigate the relative performance of the relaxation and primal simplex codes to variations 

in network density and total supply. Both Bertsekas and Tseng (1988) and Bradley, 

Brown and Graves (1977) report no significant variations in performance due to cost range 

variations, to include negative costs; accordingly, cost range variations are not investigated 

here, and in fact are always kept constant at between 1 and 100 for all test problems. 

Bradley, Brown and Graves note that their primal simplex codes seem to be more efficient 

at solving non-random ("real world") networks. However, the difficulty of obtaining 

suitable non-random networks for test purposes (i.e., widely accepted as appropriate and 

capable of being reproduced by the mathematical programming community at large) 

preclude their use in this thesis. 

1. Density Variations 

Both 400 and 300 node transportation test problems are generated with varying 

density--up to approximately (N/2)2 and with total supply held constant at 100,000. Tables 
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A.3 and A.4 contain the results of these tests, and Figure 3.6 summarizes the data in Table 

A.3. 
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Figure 3.6. Density Variations in a 400 Node Transportation Network 

Increasing the density of a network appears to make RELAXT-II even more 

efficient relative to the other codes, although it again fails to run when solving the higher 

density problems. In this case the RELAXT-II code never terminates on any solution; 

execution is halted after about sixty seconds of running time, ten times the running time of 

the slowest code. Note that GNET becomes more efficient relative to RELAX-II as density 

increases, by about twenty percent, while XNET and RELAX-II are approximately equal 

with the relaxation code slightly ahead. 

Another density variation is investigated in a 300 node transportation problem, 

this time with total supply held constant at 150--making the network an assignment 

problem as produced by NETGEN. Running times can be seen in Table A.5. These 

results indicate that the relaxation codes maintain their performance edge with changing 

network density in assignment problems, although RELAXT-II again fails to terminate 

execution on the highest density test problems. 
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2. Total Supply Variations 

Total supply is varied for two separate transportation test problems: a high 

density network of 300 nodes and 20,000 arcs, and a low density network of 300 nodes 

and 2,000 arcs. Running times for both of these experiments can be seen in Tables A.6 

and A.7, both of which are summarized in Figures 3.7 and 3.8 respectively. 
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Figure 3.7. Variations in Total Supply (High Density) 

Once again the RELAXT-11 code fails to terminate with a solution for a high 

density network; in . this case the test problem containing a total supply of 150 units. 

RELAXT-11 does, however, maintain its performance edge across all of the total supply 

variations. Relative performances seem to be independent of variations of total supply in 

both high and low density transportation networks, except that total supplies of above 

100,000 appear to favor GNET over RELAX-II, while XNET performs on par with 

RELAX-II. 
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E . KILOBYTE-SECOND ANALYSIS 

The storage requirements for the relaxation routines are considerably higher than for 

the primal simplex routines and are acknowledged by Bertsekas and Tseng to be the main 

disadvantage of the relaxation methods. While technological trends indicate that computer 

memory is becoming less expensive, there are still valid reasons for demanding storage 

efficiency. 

When relatively small problems are being solved on large computers, storage is no 

great consideration. The size (read richness and fidelity) of real-world network problems is 

often constrained by computer storage limitations, however, not necessarily just speed of 

computation. Even if a given problem can be feasibly solved with the technology at hand, 

more detail is often desired which demands not only better solution efficiency, but a smaller 

storage requirement. Also, if one is limited to solving network problems on a personal 

computer, as is done today with more frequency, storage requirements can easily be the 

major limiting factor. In short, there are many realistic cases where storage efficiency may 

desired ahead of a computational efficiency. 
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To address these concerns a kilobyte-second analysis is presented. Total storage 

requirements (compiled program size plus array storage) is determined for each of the four 

codes being evaluated for each test problem, and is multiplied by the running times for each 

test problem. Figures 3.9, 3.10 and 3.11 summarize this analysis. VSNET problem 

number 6 is not included in Figure 3.11 because greatly it distorts the scaling of the graph. 
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It is clear that both primal simplex codes perform much better when storage is 

considered as part of the measure of effectiveness. XNET is particularly good in the large, 

randomly generated NETGEN problems with many sinks (36-40) and GNET looks quite 

competitive across the board. There were in fact no network problem categories in which 

the relaxation codes were competitive within the framework of this measure of 

effectiveness. 

40 



IV. IMPLEMENTATION ASPECTS OF THE RELAXATION 

METHODOLOGY 

This chapter discusses some of the implementation issues of the relaxation 

methodology. After a description of how Bertsekas and Tseng have designed their codes, 

several modifications of RELAX-II are put forward and analyzed that reveal promising 

directions for further research. Emphasis is on the RELAX-II code because it is the most 

immediately instructive of the two available codes. 

A. IMPLEMENTATION OF THE RELAXATION METHOD 

The algorithm given at the end of Chapter II can be broken down into a basic flow of 

actions. First, it is necessary to find some node that has deficit and to place this node into 

the set of nodes under consideration for a price change (the setS identified in Chapter II). 

Second, it must be determined whether it is advantageous to change the price of the selected 

node, or whether it is possible to push flow along a flow augmenting path that begins with 

the first selected node. Finally, if the dual function cannot be improved via a price change 

and no flow augmenting path has been found, a decision must be made as to how to add 

another node to S from all the possible candidates in set L. 

Recall that if the process stops before a second node is added to S then a single node 

iteration (SNI) has been performed; with more than one node included inS, a multiple node 

iteration (MNI) has been concluded. It is intuitive to expect that a SNI is more efficient 

than a multiple node iteration, and in fact the computational experience of Bertsekas and 

Tseng corroborates this observation, to the point where they intentionally try to increase the 

relative occurrence of SNis over MNis in both their implementing codes. In the 

preprocessing phase of each code--included in the reported running times--each arc capacity 
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is set to as small a value as possible without changing the optimal solution. For example, 

in a transportation problem, each arc capacity is set to the minimum of the supply and 

demand of the head and tail nodes. By tightening the arc capacity the incidence of SNis 

tends to increase, although Bertsekas and Tseng do not have a ready explanation for this 

phenomenon. 

A network problem is presented to the algorithms as a simple edge list. Lower bounds 

are assumed to be zero. If any lower bounds are present in the problem, the user is 

expected to apply the standard transformation x'ij = Xij- lij. allow the algorithm to solve for 

x'*, and then reverse the transformation. The edge list is read by a data input subroutine 

(to be written by the user) and then transformed into the data structures used by the 

relaxation codes with a subroutine named INIDAT, provided by Bertsekas and Tseng. 

Subroutine INIDAT has inputs of: NA, number of arcs in the network; N, number of 

nodes; STAR TN G), the array of head nodes of arc j; and ENDNG), the array of tail nodes 

of arc j. It produces as output a linked list for each set of incident arcs to each node, both 

in forward and reverse star forms. The output arrays of INIDAT are: FOU(i), containing 

the first of the arcs leaving node i; NXTOUG), the next arc to j leaving ST ARTNG); 

FIN(i), the first arc entering node i; NXTING), the next arc to j entering ENDG). FOU and 

NXTOU constitute the forward star representation of the network, while FIN and NXTIN 

are the reverse star. Although these arrays are really just a series of pointers, they are an 

unusual data structure; an example of how they are implemented can be seen in Figure 4.1. 

Why has this data structure been selected? To address this question the running times 

of two simple test programs that perform a depth-first search are observed, each differing 

only by the type of data structure used: one with a hierarchical adjacency list (HAL), which 

is used in both primal simplex codes, and the other with a linked list created by INIDAT. 
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Across a series of test problems, the test program using the linked list is seen to be about 

fifty percent faster than the program using the HAL data data structure. 

ST ARTN( *) ENDN( *) FIN(*) NXTIN(*) FOU(*) NXTOU(*) 

1 1 

Figure 4.1. An Example of the INIDAT Data Structures. 

This dramatic performance difference is attributed to the manner in which the two data 

structures access adjacent arcs. The HAL data structure uses a INI+ 1 length array, EP(*), 

which is an entry pointer into an IAI length array, TAIL(*), which in turn contains the 

nodes adjacent to some selected node. For example, a code to find all nodes adjacent to 

node STARTNODE in a reverse star HAL is (variables longer than 6 characters are used 

for clarity) 

DO 100 I=EP(STARTNODE), EP(STARTNODE+1)-1 
ADJACENTNODE=TAIL(I) 

100 CONTINUE 

which assigns the nodes of interest to the variable ADJACENTNODE. Using the FIN(*) 

and NXTIN(*) arrays described above in a linked list of the type produced by subroutine 

INIDA T, a code to find the arcs incident to STAR TN ODE is 
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100 
ARC=FOU(STARTNODE) 

ARC=NXTIN(ARC) 
IF(ARC.NE.O) GO TO 100 

where the variable ARC can be used as an index to access the network data arrays. The 

observed performance difference of the two data structures is probably due to the fact that 

the HAL data structure must use a DO loop for which both the starting and ending value of 

the index variable must be computed. The INIDAT-created linked list data structure is 

more efficient since it uses only direct assignment statements and one IF check against a 

constant (zero). 

The input parameters for both the RELAX-IT and RELAXT-11 subroutines contain all 

of the scalars and arrays that are inputs and outputs of INIDAT, plus array U(j), the flow 

capacity of arc j, and array B(i), the demand of node i (positive for demand nodes and 

negative for supply nodes), both of which are read from the input edge list. 

At this point the procedures of the two algorithms diverge. The remainder of this 

section will be devoted to an exploration of the RELAX-IT implementation of the relaxation 

methodology. 

RELAX-II initially performs a feasibility check of the network after which the initial 

prices of all nodes are set to zero. Flows are set to zero for nonnegative arc costs, and to 

the upper bound for negative arc costs. Once flows are initialized, the starting deficit of 

each node is calculated and stored in array DFCT. 

The stage is now set for the selection of the first node to enter S. This is done by 

simply selecting the node associated with position one of the node length array DFCT. If 

the selected node happens to have a deficit, the relaxation method begins an iteration with 

this first node. Otherwise, the next node in array DFCT is considered in order. If there are 
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no nodes with deficit remaining (DFCf contains all zeroes), the algorithm terminates. The 

search procedure is implemented by means of a DO loop, which searches the DFCf array 

for nodes still having some deficit by repeatedly cycling through the DFCf array, taking 

the nodes in the order in which they happen to have been entered into the data structure 

from the original edge list. Once a node with deficit has been found, RELAX-II will 

attempt to perform a SNI with this node. If it is not possible to do either a dual function 

ascent or a flow augmentation with the frrst selected node, more nodes adjacent to the 

starting node will be allowed to enter S, as outlined in the algorithm in Chapter II. This 

process of increasing the number of nodes in S will continue incrementally until certain 

stopping criteria discussed below are met. 

The opening strategy of RELAX-II is to temporarily limit all iterations to be SNis. 

This is done by not allowing any MNis to occur during the first two loops through the 

DFCf array, i.e., if the selected single node fails to produce a dual function improvement 

or a flow augmentation, the iteration attempt will terminate before any more nodes are 

added to S, the DO loop counter will increment by one, and the next position in the DFCT 

array will be checked for a node possessing a deficit. The purpose of this opening 

procedure is to attempt to phase in as much initial flow as possible with cheap SNis. This 

strategy works well for all problems, but it is especially beneficial for transportation and 

assignment problems. 

Once two full loops though the DFCf array have been made, MNis are allowed in 

conjunction with SNis. Specifically, if a SNI attempt has proven unsuccessful, then more 

nodes are allowed to enter set S. If the SNI is successful then the iteration terminates, the 

DO loop counter is incremented and the next node in the DFCf array is considered. In this 

way, MNis only occur as a consequence of a failed SNI. Nodes will continue to be placed 

in S until the residual capacity across the cut of S is less than the total deficit of all nodes in 
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S. (The residual capacity of S is the difference between the current flow of all arcs 

crossing the set boundary and the upper bounds of these arcs.) 

In certain specific cases, an adaptive strategy is imposed to control the occurrence of 

MNI price changes by the use of two scalars: TP and TS. When the total number of nodes 

with deficit is less than TP, and S has grown to include a total ofTS nodes, no MNI price 

change is allowed, although flow augmentation may still occur. After much 

experimentation, Bertsekas and Tseng have set TP to a value of 10 and TS is to INI/15, and 

report that these values seem to provide the best all around performance for RELAX-II. 

B. EXPERIMENTS INVOLVING SORTED INPUT 

As stated, the relaxation codes read the network data in the order in which it is 

presented in the edge list; this initial ordering of the input data is important to the priority in 

which nodes are considered for initializing an iteration step because it forces the ordering of 

DFCT. Is there a better way to present the data to the algorithm? To investigate this 

question four different sortings of the input data are investigated: by ascending and 

descending arc cost values, and by ascending and descending arc capacity values. Sorting 

is accomplished before the actual relaxation codes are given the problem, and are not 

included in the running time results shown in Tables B.1 and B.2 for the RELAX-II and 

RELAXT-II codes respectively. Figures 4.2 and 4.3 summarize Tables B.1 and B.2 with 

the percentage of change in running times expressed in terms of the total running time for 

all forty standard NETGEN problems. 

There is a small advantage to pre-sorting data for these codes, particularly by 

descending arc capacity, but not a large one. Clearly, it may not be worthwhile to expend 

computer resources sorting data for a small network such as those that are used for testing 

here--the time to sort the data would be longer than the savings gained. However, there are 

two situations in which a sort may prove useful. First, if a problem is large enough, the 
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employment of an efficient sorting scheme may be advantageous. Second, if a network is 

to be solved many times, without a change in the network structure, a single initial sort may 

produce a substantial time savings over multiple runs. 

Figure 4.2. Data Pre-sort Effect on Running Time (RELAX-II) 
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Figure 4.3. Data Pre-sort Effect on Running Time (RELAXT -II) 

47 



C. DYNAMIC PRIORITY QUEUE MODIFICATION 

When determining which node to select as the starting node for an iteration, RELAX-II 

does not employ any ranking scheme, it merely considers nodes in the order in which they 

are presented by the original edge list. A modification of RELAX-II is investigated in 

which the node selection process is based on a node's absolute deficit. By employing a 

dynamic priority queue of node deficits, it is possible to always select the node with the 

maximum absolute deficit for consideration as a starting node in any iteration. This is done 

by continually updating the priority queue every time a node deficit is changed, and then 

selecting the leading member of the queue when the next iteration is to begin. The specific 

priority queue used is a binary tree, also called a two-heap. 

To implement the priority queue in RELAX-II, the DO loop that controls the search of 

the DFCT array is eliminated from the code and a queue selection process is substituted. 

As modifications to node deficits occurred during the relaxation iteration process, the 

binary tree is continually updated. Thus, it is possible to identify the precise order of 

absolute deficits at any point in the algorithm, a completely dynamic priority queue. 

Baseline iteration counts were conducted to evaluate the number of single and multiple 

node iterations (SNis and MNis respectively) performed by the unmodified RELAX-II 

code, for both the NETGEN and VSNET problem sets . These can be seen in Table B.3. 

Table B.4 contains the number of SNis and MNis performed by RELAX-II (PQ), and the 

associated running times. The running time behavior for RELAX-II(PQ) is not impressive 

(Appendix B.4), particularly for assignment problems, but the number of SNis and MNis 

performed has been dramatically reduced. Figure 4.4 shows the savings in SNis made for 

the first 35 NETGEN problems; Figure 4.5 the savings in SNis made for NETGEN 36-40 

and the VSNET problem set; Figure 4.6 the savings in MNis made for the first 35 

NETGEN problems; and Figure 4.7 the savings made for NETGEN 36-40 and the VSNET 

problem set. 
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Prioritizing nodes by absolute deficit clearly reduces the number of iterations, both 

SNis and ~v1Nls. It is also clear that prioritization does not improve the running time 
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performance of RELAX-II, at least as implemented by a priority queue. The natural 

question is: does prioritizing the node selection process somehow increase the time per 

iteration over the unmodified version of RELAX-II? To investigate this question a timing 

function is installed in both RELAX-II and RELAX-II(PQ) to measure the duration of the 

average SNI and MNI. Implementing the measurement requires calls to be made to a 

timing function in dozens of locations throughout the program which necessarily 

confounds measurement accuracy so that the results must be treated with some skepticism. 

The tests reveal, however, that while RELAX-II(PQ) produces less efficient MNis, it 

reduces the running time of the average SNI. Referring to Figures 4.4 through 4. 7, the 

usual RELAX-II(PQ) savings in MNis is about 50 percent, while the savings in SNis is 

much more than this, a factor of five or more in all test networks except assignment 

problems. Note also from Table B.3 and B.4 that SNls are always much more numerous 

that MNis. 

The indication is that prioritizing the node selection process may yield a net savings in 

running time; exactly how much it is impossible to say because the performance of the 

timing experiment was not satisfactory. In any case, whatever computational savings are 

being generated by the node prioritization process are being compromised by the 

inefficiencies of the priority queue implementation. 

A variation of the dynamic priority queue is explored in which array DFCT is ordered 

a single time by absolute node deficit before the relaxation process is allowed to begin. 

After this first sort, which is not included in the running time measurements, the relaxation 

process is allowed to proceed as in the original, unmodified version to find the optimal 

solution. Running times (see Table B.5) for this variation are not improved for the 

NETGEN transportation, assignment and capacitated transshipment problems. There is, 

however, a measurable improvement in the large scale NETGEN (about 3 percent) and 
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VSI\TET (about 4 percent) problems, indicating that even a single initial sorting of nodes in 

order of decreasing absolute deficit produces a visible change in performance. 

D. PARTIAL SORT VARIATION 

A partial sort variation of RELAX-II is implemented as follows. First, the DFCT 

array is compressed by removing all zero deficit node elements, and a pointer array POINT 

is created that identifies which node is associated which each deficit in DFCT. (If 

POINT(n) is zero then node n is not on array DFCT, otherwise, POINT(n) identifies the 

node associated with a position in DFCT.) Next, a variable LAST that identifies the current 

last position of DFCT, and a variable CPOS that holds the current position in DFCT under 

consideration are created. As nodes develop nonzero deficits during the relaxation process, 

they are placed at the end of the DFCT array and LAST and POINT are updated. As node 

deficits become zero, say DFCT(n)=O, the assignments DFCT(n)=DFCT(LAST) are made, 

and LAST is reduced by one and POINT is updated. The DO loop is allowed to cycle 

CPOS from one to LAST repeatedly, selecting nodes for relaxation iterations until 

LAST=O, i.e., all nodes have zero deficit. This procedure will create a relatively efficient, 

but unordered, cycling through the current nodes with deficits. 

Having the above data structure, when the node associated with DFCT(CPOS) is 

being considered as a starting node in a relaxation iteration, all nodes from DFCT(CPOS) 

to DFCT(CPOS+NTI) are searched to find the node with the maximum absolute deficit. If 

CPOS+NTT>LAST, the search is conducted from DFCT(LAST-NTI) to DFCT(LAST). 

If LAST<I\TTT, the search is conducted from DFCT(l) to DFCT(LAST). In this way a 

"local" maximum absolute deficit will be found, but with much less computational effort 

than that required to accomplish a dynamic priority queue sort. The problem then becomes 

one of finding the optimum setting of NTI for the network problem to be solved. 
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Experimental runs were conducted for all forty standard NETGEN problems and the 

six specially constructed VSNET problems. For each problem, NTT is varied until a 

minimum running time is obtained; results are contained in Table B.6 and Figures 4.8 and 

4.9 summarize these data. Two particulars stand out. First, missing the optimum value of 

NIT by as little as one unit caused, for some problems, a massive increase in running time. 

Second, the optimum NTT value could not be related to any network parameter such as 

number of nodes, number of arcs, cost range, etc. Thus, the partial sort modification of 

RELAX-II, RELAX-II(PS), is not useful in practice since each problem must be run 

repetitively until an optimum NTT value can be found. It does show, however, that there 

are some significant improvements to be gained even by partially prioritizing the node 

selection process in the relaxation algorithms. 

10 

D RELAX-II 
8 1:8 RELAX-II(PS) 
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E- 6 ·- t/) 
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a: 
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1-5 6-10 11-15 16-27 28-35 

Sum of Running Times 
{by NETGEN Problem Number) 

Figure 4.8. RELAX-II and RELAX-II(PS) Running Time Comparison 
(NETGEN 1-35) 
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Figure 4.9. RELAX-II and RELAX-II(PS) Running Time Comparison 
(NETGEN 36-40 and VSNET 1-6) 

RELAX-II(PS) is equal to or worse than RELAX-II when solving transportation, 

assignment, and capacitated transshipment problems, but produces substantial run time 

efficiencies for uncapacitated transshipment problems and large scale problems in the 

NETGEN problems set. In the VSNET problem set, RELAX-II(PS) ran more efficiently 

in every case except problem number five. 

Clearly, there is an advantage to prioritizing starting nodes when using the relaxation 

method. RELAX-II(PQ) shows that there is a substantial iteration savings associated with 

selecting relaxation starting nodes by maximum absolute deficit, although the binary tree 

sort is perhaps not the way to implement the idea. RELAX-II(PS) shows that prioritizing 

over some small subset of nodes with deficit produces good results, but obvious 

implementation problems are apparent. Is there some method of applying a prioritization 

scheme to the node selection process in the relaxation methodology that is both 

computationally efficient and can be effectively implemented? Further research could 

potentially produce a better version of RELAX-II. 
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V. CONCLUSIONS 

This thesis primarily investigates the relative computational efficiencies of the original, 

unmodified primal simplex codes GNET and XNET, and the newer relaxation codes 

RELAX-II and RELAXT-II. Tests conducted by Bertsekas and Tseng (1988) had shown 

the relaxation codes to be on the order of four to five times faster than the primal simplex 

codes at solving the standard NETGEN problem set. Their results are not duplicated here. 

Within the limits of the testing method employed, it is found that while the relaxation codes 

do perform better when solving specific standard NETGEN problems (1-35), the primal 

simplex codes are still closely competitive. In particular, the primal simplex codes are more 

efficient at solving large, randomly generated problems with many more sinks than sources 

(NETGEN 36-40) and capacitated transshipment networks that contain something other 

than a purely random structure. The following specific assessments are made. 

1. Table 5.1 summarizes the running times of the four codes evaluated for all test 

problems. When VSNET 3, which RELAXT-II did not solve, is included in the total sum 

of running times for all test problems, both GNET and XNET perform faster than RELAX­

II. When VSNET 3 is excluded from the total sum of running times, RELAXT-II is the 

fastest code, but XNET remains faster than RELAX-II in this and all other cases. These 

results do not duplicate those obtained by Bertsekas and Tseng (1988) in their evaluation of 

the relaxation codes against a primal simplex code developed by Grigoriadis and Hsu 

(1980), and in fact show that primal simplex methods remain closely competitive. 

2. Both relaxation codes are more computationally efficient than the primal simplex 

codes at solving transportation and assignment problems in all observed cases. 

3. The primal simplex codes tend to be faster when solving VSNET-generated 

transshipment networks, particularly when capacitated. This is attributed to the heuristics 
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incorporated in both GNET and XNET that take advantage of networks that have an 

echelon structure with more sinks than sources. 

TABLE 5.1. SUMMARY OF RUNNING TIMES FOR ALL TEST 
PROBLEMS 

Row Problem Set RELAX-II RELAXT-11 G\JET XNET 

1 Total NETGEN 85.33 71.09 153.52 79.74 

2 Total VSNET 120.63 49.18 97.94 114.73 
(#3 Not Incl.) 

3 Total VSNET 14 7. 89 N4. 114.41 124.38 
(#3 Incl.) 

4 Sum of Row1 233.20 N4. 267.93 204.12 
and Row2 

5 Sum of Row1 205.96 120.27 251 .46 194.47 
and Row3 

4. RELAXT-II clearly runs fastest on uncapacitated transshipment problems in all 

cases when it runs. RELAX-II is less computationally efficient in these problems, and is 

comparable to the primal simplex codes, particularly on those problems generated by 

VSNET. Again, the network structure characteristics that are created by VSNET seem to 

favor the primal simplex codes. 

5. Increases in transportation problem density tends to favor the primal simplex 

codes, at least when compared to RELAX-II. RELAXT-II did not run for the higher 

density networks, although it is clearly the fastest code for the low and moderate density 

networks. 

6. The relaxation codes maintain a clear performance edge in all density variations of 

assignment problems, although RELAXT-II again failed to run at high density. 

7. When varying total supply in transportation problems, both relaxation codes are 

superior when total supply is set below 1,000, while GNET is usually superior to RELAX-
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II when total supply is set above 5,000 (see Tables A.6 and A.7). This is particularly true 

for high density networks, but is also observed to a lesser extent in low density networks . 

8. The primal simplex codes typically require less than half the computer storage 

space that the relaxation codes require. This represents a serious limitation to the analyst 

interested in solving large scale networks on a mainframe computer, or smaller networks 

on a personal computer. In all cases, the primal simplex codes are more efficient when 

running time and storage requirements are combined into a single measure of effectiveness. 

9. It can be advantageous to sort the edge list data input to both relaxation codes prior 

to commencing the solution process. Sorting by descending arc capacity gives the best 

results. Sorting the edge list in this manner is expected to be fruitful for very large 

networks when a very efficient sorting routine is used, or when a network is to be solved 

repetitively without a change in the network parameters. 

10. Implementing a dynamic priority queue to select the node with the largest absolute 

deficit as a starting node in a relaxation iteration dramatically cuts down on the number of 

single and multiple node iterations. While the resulting multiple node iterations appear to 

be slower, single node iterations appear to be faster. With single node iterations greatly 

outnumbering multiple node iterations, a net improvement in running time efficiency could 

be expected. However, the priority queue used in this thesis to implement RELAX-II(PQ) 

is not efficient enough to take advantage of the inherent time savings. More research is 

needed. 

11. A single sort variation of the priority queue was investigated and found to have no 

effect on transportation, assignment and capacitated transshipment problems. Modest 

improvements in computer running time are observed for the large scale NETGEN 

problems and for most of the VSNET problems. 
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12. A partial sort variation RELAX-ll(PS) showed no improvement when solving the 

NETGEN transportation, assignment or capacitated transshipment problems, but did 

produce substantial efficiencies for NETGEN uncapacitated transshipment and the VSNET 

networks. The implementation difficulties inherent in RELAX-II(PS) tend to negate its 

advantages since each problem must be specially manipulated to attain any run-time gains. 

This modification does, however, illustrate that there are advantages to be gained even by 

modest prioritization of deficits. 

The research has produced compelling evidence that the relaxation algorithms can be 

further refined, possibly to the point where they are clearly superior to the current primal 

simplex codes. All indications reinforce the idea of prioritizing the node selection process 

by absolute deficit. Unfortunately, the modifications attempted in this thesis proved to be 

less efficient in total running time than the original codes. It is strongly suspected that a 

solution algorithm that incorporates the basic relaxation method, in conjunction with some 

kind of intelligent node selection process, will prove highly efficient. The actual design of 

such an algorithm is beyond the scope of this thesis and is consequently left as a direction 

for further research. 
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APPENDIX A UNMODIFIED RUNNING TIMES 

This Appendix contains the unmodified running times of several experimental runs of 

the network solvers RELAX-II, RELAXT-II, GNET and XNET. All experiments were 

conducted on an IBM 3033AP computer employing CMS version 5.0 and operating on a 

time share basis. The solver codes were compiled by VS Fortran version 1.4.1 under 

optimization level 3. 

TABLE A.l. NETGEN STANDARD PROBLEM SET 
These standard benchmark test problems are from Klingman, Napier and Stutz 
(1974) and were obtained using the network generator NETGEN. Running 
times are in seconds. 

NETGEN# RELAX II RELAXTII GJEr XNET 
1 0.18 0.19 0.19 0.24 
2 0.26 0.21 0.22 0.24 
3 0.26 0.20 0.27 0.32 200 Node Transport 
4 0.48 0.33 0.25 0.34 
5 0.33 0.26 0.33 0.36 

Sum 1. 51 1 .20 1 .26 1.49 
6 0.48 0.46 0.43 0.56 
7 0.61 0.47 0.62 0.80 
8 0.71 0.52 0.82 0.99 300 Node Transport 
9 0.63 0.43 0.84 1.09 

1 0 0.71 0.49 0.94 1.1 7 
Sum 3.14 2.36 3.65 4.60 
1 1 0.12 0.12 0.39 0.45 
1 2 0.14 0.17 0.46 0.60 
1 3 0.24 0.29 0.48 0.68 400 Node Assignment 
1 4 0.23 0.30 0.66 0.70 
1 5 0.45 0.39 0.88 0.83 

Sum 1 . 1 9 1.27 2.88 3.24 
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NETGEN# RELAX II 
1 6 0.26 
1 7 0.37 
1 8 0.31 
1 9 0.34 
20 0.34 
21 0.43 
22 0.32 
23 0.60 
24 0.18 
25 0.46 
26 0.13 
27 0.26 

Sum 4.01 
28 0.73 
29 0.81 
30 1 .25 
31 0.84 
32 1 . 11 
33 1 .49 
34 0.82 
35 1 .31 
Sum 8.35 
36 30.24 
37 13.68 
38 8.99 
39 8.72 
40 5.51 

Sum 67.13 

TABLE A.l. (CONTINUED) 

RELAXTII GJEf XNET 
0.27 0.28 0.35 
0.43 0.38 0.41 
0.27 0.31 0.32 
0.38 0.42 0.43 
0.36 0.30 0.33 
0.33 0.31 0.34 
0.37 0.27 0.28 
0.53 0.31 0.29 
0.17 0.29 0.30 
0.39 0.34 0.34 
0. 11 0.26 0.22 
0.26 0.27 0.27 
3.86 3.76 3.88 
0.59 1.27 0.82 
0.75 1 .31 0.83 
1 .02 1.37 0.92 
0.72 1.38 1.00 
1 . 11 2.40 1 .27 
1 .26 2.41 1.27 
0.84 2.57 1 .46 
1.47 2.56 1 .49 
7.76 15.27 9.05 
29.19 51.47 17.89 
9.83 25.71 13.54 
4.57 14.30 9.68 
7.38 23.49 9.80 
3.67 11.73 6.57 
54.64 1 2 6. 70 57.48 
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TABLE A.2. VSNET PROBLEM SET 
Additional test problems obtained by using VSNET, a network 
problem generator developed by Bonwit (1984) at the Naval 
Postgraduate School, Monterey, California. V SNET creates 
transshipment networks as a series of echelons (specified by the 
user) upon which a set of random arcs are constructed. Problem 
generation parameters were all held constant except for those 
indicated in the table. All running times are in seconds. 

VSNET# #Nodes #Arcs RELAXII RELAXTII G£1" 
Capacitated Transshi~ ment Networks 

1 500 10000 3.75 2.27 1 .34 
2 1000 20000 4.04 3.24 2.71 
3 5000 30000 27.26 DNR 16.47 

Sum 35.05 5.51 20.52 
Uncapacitated Transshipment Netwoks 

4 500 10000 4.98 3.24 5.96 
5 1000 18000 11 .42 9.55 16.28 
6 5000 30000 96.44 30.88 71.66 

Sum 11 2. 84 43.67 93.89 

TABLE A.3. INCREASING NETWORK 
DENSITY (400 NODE) 

Variations on the NETGEN problem set. These 
networks are 400 node transportation problems, all 
with a constant total supply of 100,000 and a cost 
range parameter of 1 to 100. Density has been varied 
up to approximately (N/2)2. All running times are in 
seconds. 

#Nodes #Arcs RELAX II RELAXTII G'JEf XNET 
400 200 0.17 0.13 0.24 0.17 
400 1200 0.36 0.27 0.39 0.36 
400 1800 0.38 0.37 0.43 0.43 
400 2000 0.38 0.38 0.47 0.48 
400 3000 0.67 0.55 0.57 0.59 
400 5000 0.98 0.57 0.88 1 . 13 
400 8000 1.13 0.82 1.43 1. 70 
400 20000 3.39 1. 70 3.05 4.31 
400 40000 6.16 DNR 4.90 6.68 
400 50000 6.12 DNR 4.77 6.45 

DNR: D1d Not Run 
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TABLE A.4. INCREASING NETWORK 
DENSITY (300 NODE) 

More variations on the NETGEN problem set. These 
networks are 300 node transportation problems, all 
with a constant total supply of 100,000 and a cost 
range parameter of 1 to 100. Density has been varied 
up to approximately (N/2)2. All running times are in 
seconds. 

#Nodes #Arcs RELAX II RELAXTII Q\JET XNET 
300 200 0.10 0.12 0.15 0.11 
300 2000 0.32 0.30 0.34 0.41 
300 4000 0.54 0.35 0.59 0.61 
300 6000 0.83 0.58 0.89 1 . 1 0 
300 10000 1 .49 0.85 1.23 1.43 
300 12000 2.11 0.95 1.62 2.14 
300 16000 1. 73 0.99 1 .98 2.61 
300 18000 2.54 1 . 1 8 2.08 2.74 
300 20000 2.76 1.27 1 .84 2.73 
300 22000 2.08 DNR 2.18 2.84 

DNR: Did Not Run 

TABLE A.5. INCREASING DENSITY 
NETWORK (300 NODE) 

More variations on the NETGEN problem set. These 
networks are 300 node transportation problems, all with 
a constant total supply of 150 and a cost range parameter 
of 1 to 100. Density has been varied up to 
approximately (N/2)2. All running times are in seconds. 

#Nodes #Arcs RELAX II RELAXTII G'JEf XNET 
300 200 0.02 0.02 0.06 0.03 
300 2000 0.15 0.16 0.36 0.42 
300 4000 0.16 0.31 0.34 0.65 
300 6000 0.54 0.52 0.93 0.99 
300 10000 0.70 0.49 1 .41 1 .09 
300 12000 0.62 0.66 1 .48 20.57 
300 16000 0.83 0.80 1 .86 2.31 
300 18000 1 .00 DNR 2.25 2.24 
300 20000 1 .00 DNR 1 .83 2.51 
300 22000 1 .52 DNR 1 .93 2.78 

DNR: Did Not Run 
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TABLE A.6. INCREASING TOTAL SUPPLY 
(CONSTANT HIGH DENSITY) 

In this problem set a 300 node transportation problem of a 
constant high density (20,000 arcs) was created with NETGEN 
and total supply was allowed to vary. The cost range parameter 
remained at 1 to 100 and all running times are in seconds. 

#Nodes #Arcs Supply RELAX II RELAXTII (3\JEf XNET 
300 20000 150 1 .00 DNA 1.83 2.51 
300 20000 1000 1 .43 1. 31 2.28 3.12 
300 20000 5000 3.12 1.25 2.33 2.44 
300 20000 50000 3.16 1.14 2.11 2.98 
300 20000 100000 2.75 1.1 6 1 .80 2.90 
300 20000 1000000 2.52 1 .21 2.21 2.93 
300 20000 10000000 2.61 1.22 2.20 2.70 

DNA: Did Not Run 

TABLE A.7. INCREASING TOTAL SUPPLY 
(CONSTANT LOW DENSITY) 

This problem set contains a 300 node transportation problem of 
a constant low density (2,000 arcs), also created with 
NETGEN. Total supply was allowed to vary and the cost range 
parameter was held constant at between 1 to 100. All running 
times are in seconds. 

#Nodes #Arcs Supply RELAX II RELAXTII G\JEf XNET 
300 20000 150 0.16 0.16 0.32 0.42 
300 20000 5000 0.31 0.24 0.30 0.43 
300 20000 50000 0.34 0.43 0.35 0.42 
300 20000 100000 0.32 0.28 0.36 0.35 
300 20000 1000000 0.37 0.28 0.35 0.43 
300 20000 10000000 0.37 0.27 0.32 0.37 
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APPENDIX B MODIFIED RUNNING TIMES 

This Appendix contains the solution times and iteration count data for several 

experimental versions of the relaxation algorithms solving NETGEN and VSNET network 

problems. All experiments were conducted on an mM 3033AP computer employing CMS 

version 5.0 and operating on a time share basis. The solver codes were compiled by VS 

Fortran version 1.4.1 under optimization level 3. 

TABLE B.l. SORTING INPUT FOR RELAX-II 
This table contains running times obtained by pre-sorting network data before 
allowing the unmodified RELAX-II code to solve the problem. The test 
problems are the standard set of forty test problems generated by NETGEN. 

NETGEN# RELAX II Ascending Descending Ascending Descending 
(baseline) Cost Cost Capacity Capacity 

1 0.18 0.15 0.1 8 0.18 0.18 
2 0.26 0.26 0.21 0.26 0.27 
3 0.26 0.25 0.29 0.28 0.25 
4 0.48 0.46 0.31 0.43 0.44 
5 0.33 0.30 0.33 0.31 0.30 

Sum 1 .51 1.42 1.33 1 .46 1.43 
6 0.48 0.61 0.48 0.46 0.47 
7 0.61 0.71 0.54 0.55 0.57 
8 0.71 0.60 0.67 0.65 0.64 
9 0.63 0.77 0.73 0.57 0.59 

1 0 0.71 0.75 0.78 0.69 0.69 
Sum 3.14 3.44 3.21 2.90 2.96 
1 1 0.12 0.13 0.10 0.11 0.14 
1 2 0.14 0.1 5 0.1 8 0.14 0.14 
1 3 0.24 0.23 0.22 0.22 0.20 
1 4 0.23 0.26 0.24 0.23 0.20 
1 5 0.45 0.41 0.36 0.43 0.40 

Sum 1.19 1 .1 7 1 . 1 1 1.13 1.08 
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TABLE B.l. (CONTINUED) 

NETGEN# RELAX II Ascending Descending Ascending Descending 
(baseline) Cost Cost Capacity Capacity 

1 6 0.26 0.26 0.24 0.23 0.22 
1 7 0.37 0.39 0.46 0.39 0.39 
1 8 0.31 0.30 0.27 0.30 0.31 
1 9 0.34 0.34 0.40 0.35 0.38 
20 0.34 0.32 0.32 0.35 0.37 
2 1 0.43 0.44 0.43 0.52 0.53 
22 0.32 0.32 0.35 0.32 0.32 
23 0.60 0.48 0.54 0.46 0.45 
24 0.18 0.20 0.21 0.15 0.18 
25 0.46 0.48 0.42 0.45 0.48 
26 0.13 0.14 0.08 0.11 0.11 
27 0.26 0.29 0.28 0.29 0.27 

Sum 4.01 3.95 3.98 3.92 3.98 
28 0.73 0.54 0.66 0.68 0.62 
29 0.81 0.70 0.76 0.74 0.76 
30 1 .25 1 . 1 6 1.08 1 .20 1.25 
31 0.84 0.77 0.80 0.81 0.85 
32 1 . 11 1.20 1 .25 1.06 1.07 
33 1 .49 1 .36 1 .29 1 .36 1.37 
34 0.82 0.82 0.89 0.80 0.80 
35 1 .31 1 . 1 3 1 . 1 9 1 .24 1 .24 
Sum 8.35 7.65 7.91 7.89 7.96 
36 30.24 34.49 30.62 29.47 29.19 
37 13.68 13.43 13.50 13.48 13.21 
38 * 8. 99 DNR DNR DNR DNR 
39 8.72 15.98 10.08 8.65 8.46 
40 5.51 6.62 6.60 5.17 5.12 
Sum 58.14 70.51 60.81 56.77 55.98 

DNR: D1d Not Run 
* Running time not included in sum calculation 
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TABLE B.2. SORTING INPUT FOR RELAXT -II 
This table contains running times obtained by pre-sorting network data before 
allowing the unmodified RELAXT-II code to solve the problem. The test 
problems are the standard set of forty test problems generated by NETGEN. 

NETGEN# RElAXTII Ascending Descending Ascending Descending 
(baseline) Cost Cost Capacity Capacity 

1 0.19 0.17 0.14 0.20 0.18 
2 0.21 0.22 0.23 0.17 0.19 
3 0.20 0.23 0.20 0.24 0.23 
4 0.33 0.30 0.34 0.28 0.30 
5 0.26 0.27 0.32 0.25 0.23 

Sum 1 .20 1 . 1 9 1 .23 1.1 5 1.1 3 
6 0.46 0.43 0.46 0.42 0.43 
7 0.47 0.44 0.43 0.43 0.43 
8 0.52 0.45 0.48 0.50 0.48 
9 0.43 0.42 0.45 0.42 0.43 

1 0 0.49 0.25 0.51 0.47 0.49 
Sum 2.36 1. 98 2.32 2.24 2.26 
1 1 0.12 0.13 0.10 0.10 0.13 
1 2 0.17 0.15 0.14 0.17 0.15 
1 3 0.29 0.22 0.22 0.24 0.23 
1 4 0.30 0.31 0.28 0.29 0.27 
1 5 0.39 0.36 0.39 0.36 0.39 

Sum 1 .27 1 . 1 8 1 .1 3 1.1 5 1.1 5 
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TABLE B.2. (CONTINUED) 

NETGEN# RELAXTII Ascending Descending Ascending Descending 
(baseline) Cost Cost Capacity Capacity 

1 6 0.27 0.28 0.26 0.23 0.28 
1 7 0.43 0.48 0.38 0.40 0.41 
1 8 0.27 0.35 0.25 0.22 0.25 
1 9 0.38 0.35 0.34 0.34 0.34 
20 0.36 0.38 0.37 0.32 0.31 
2 1 0.33 0.32 0.31 0.34 0.32 
22 0.37 0.35 0.36 0.35 0.37 
23 0.53 0.51 0.50 0.51 0.51 
24 0.17 0.1 6 0.22 0.16 0.18 
25 0.39 0.46 0.37 0.39 0.41 
26 0. 11 0.1 0 0.11 0.09 0. 11 
27 0.26 0.26 0.23 0.24 0.26 

Sum 3.86 3.98 3.69 3.58 3.74 
28 0.59 0.58 0.69 0.58 0.56 
29 0.75 0.75 0.75 0.74 0. 71 
30 1 .02 1.00 1 . 1 8 0.95 0.97 
3 1 0.72 0. 71 0. 71 0.70 0.70 
32 1 . 11 1 .21 1 . 1 8 1 . 11 1 . 1 0 
33 1 .26 1 .32 1.27 1.23 1 .25 
34 0.84 0.82 0.80 0.80 0.80 
35 1 .4 7 1 .1 3 1.54 1 .40 1 .37 
Sum 7.76 7.52 8.12 7.51 7.46 
36 29.19 27.08 26.34 27.92 27.48 
37 *9 .83 DNR DNR DNR DNR 
38 *4 .57 DNR DNR DNR DNR 
39 7.38 9.06 9.22 7.06 7.05 
40 *3.671 *3.684 DNR *3.474 *3.519 
Sum 36.57 36.15 35.56 34.98 34.53 

DNR: Did Not Run 
* Running time not included in sum calculations 
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TABLE B.3. BASELINE ITERATION COUNT 
This table contains the baseline counts of both single node iterations 
(SNI) and multiple node iterations (MNI). These data were obtained 
from the unmodified RELAX-II implementation with only appropriate 
counting variables added to the code. 

NETGEN Single Node Mult. Node NETGEN Single Node Mult. Node 
Num. Iterations Iterations Num. Iterations Iterations 

1 402 218 28 427 588 
2 464 292 29 410 565 
3 439 215 30 356 500 
4 463 271 31 394 589 
5 452 157 32 638 901 

Sum 2220 1153 33 677 1 054 
6 639 329 34 574 762 
7 665 286 35 631 912 
8 676 306 Sum 4107 4107 
9 598 217 36 5835 9081 

1 0 613 233 37 3991 4656 
Sum 3191 1371 38 DNR DNR 
1 1 604 95 39 3368 5132 
1 2 592 92 40 1329 1946 
1 3 674 1 1 4 Sum 14523 20815 
1 4 6 61 106 VSNET Single Node Mult. Node 
1 5 704 123 Num. Iterations Iterations 

Sum 3235 530 1 1331 627 
1 6 351 349 2 5094 2202 
1 7 306 262 3 6891 4715 
1 8 323 299 4 898 854 
1 9 302 268 5 1058 1008 
20 205 354 6 4827 3870 
2 1 208 324 Sum 20099 13276 
22 202 384 DNR: Did Not Run 
23 1 95 349 
24 134 242 
25 178 317 
26 1 1 1 166 
27 122 197 

Sum 2637 3511 
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TABLE B.4. DYNAI\1IC HEAP SORT MODIFICATION--RELAX-II(PQ) 
The data in this table was generated by RELAX-II(PQ), a modification of RELAX-II 
that selects for each relaxation iteration a starting node with the maximum absolute 
deficit. Deficits for each node were maintained in a binary tree data structure (two­
heap) which was maintained dynamically throughout the relaxation solution process. 

NETGB\J ~ngle. NodE Mult. Node Running NETGB'J Sngle. NodE Mult. Node Running 
Num. Iterations Iterations Time Num. Iterations Iterations Time 

1 104 133 0.26 28 99 125 1.26 
2 103 142 0.32 29 90 11 8 1. 76 
3 90 137 0.29 30 90 1 21 2.32 
4 108 153 0.40 31 76 127 1 . 71 
5 98 155 0.51 32 184 195 2.76 

Sum 503 720 1.77 33 134 1 9 1 2.44 
6 155 222 0.63 34 1 21 198 2.59 
7 159 242 0.79 35 156 193 3.51 
8 153 221 0.98 Sum 950 950 18.35 
9 1 6 1 219 1.29 36 374 1682 49.97 

1 0 158 213 0.98 37 206 1290 28.86 
Sum 786 111 7 4.66 38 DNA DNR DNR 
1 1 904 66 1 .09 39 22 1224 24.75 
1 2 363 82 2.30 40 1 1 1 557 16.92 
1 3 423 94 5.18 Sum 713 4753 120.50 
1 4 229 92 5.29 VSNEf Sngle. Node Mult. Node Running 
1 5 1 8 1 92 5.29 Num. Iterations Iterations Time 

Sum 2100 426 19.13 1 531 479 3.23 
1 6 1 5 86 0.65 2 2021 2799 24.91 
1 7 1 2 79 1.1 0 3 1879 911 9 79.32 
1 8 1 4 90 0.64 4 8 1 192 5.26 
1 9 1 0 79 1.09 5 163 226 19.92 
20 9 93 0.79 6 384 1156 115.87 
21 1 0 93 0.97 Sum 5059 1 3971 248.51 
22 1 8 1 0.74 DNA: Did Not Run 
23 6 89 1.35 
24 20 50 0.42 
25 1 4 56 0.82 
26 1 0 32 0.41 
27 1 0 36 0. 71 

Sum 1 31 864 9.67 
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TABLE B.S. SINGLE HEAP SORT MODIFICATION 
This Table presents the runningt times obtained when RELAX-II was given only an 
initially sorted deficit list, in order of decreasing absolute node deficit, i.e., the sorted list of 
supply and demand nodes in decreasing absolute magnitude. Following the initial sort, no 
attempt was made to update the ordering of node deficits. 

NETGEN Single Sort Baseline NETGEN Single Sort Baseline 
Num. Time RELAX II Num. Time RELAX II 

1 0.17 0.18 28 0.76 0.73 
2 0.25 0.26 29 0.70 0.81 
3 0.28 0.26 30 1 .13 1.25 
4 0.41 0.48 31 0.92 0.84 
5 0.28 0.33 32 1 .1 9 1 . 11 

Sum 1.40 1 .51 33 1 .41 1.49 
6 0.50 0.48 34 1.34 0.82 
7 0.54 0.61 35 1.27 1 .31 
8 0.60 0.71 Sum 8.72 8.35 
9 0.84 0.63 36 23.89 30.24 

1 0 0.62 0.71 37 11 . 13 13.68 
Sum 3.10 3.14 38 DNA 8.99 
1 1 0.15 0.12 39 14.18 8.72 
1 2 0.17 0.14 40 4.99 5.51 
1 3 0.27 0.24 Sum 54.18 67.13 
1 4 0.27 0.23 VSf\JET Single Node Mult. Node 
1 5 0.46 0.45 Num. Iterations Iterations 

Sum 1.33 1.1 9 1 3.89 4.98 
1 6 0.30 0.26 2 10.90 11.42 
1 7 0.41 0.37 3 64.07 69.44 
1 8 0.33 0.31 4 2.57 3.75 
1 9 0.58 0.34 5 4.34 4.04 
20 0.39 0.34 6 30.51 27.26 
21 0.57 0.43 Sum 11 6. 28 120.88 
22 0.37 0.32 DNA: Did Not Run 
23 0.54 0.60 
24 0.23 0.18 
25 0.50 0.46 
26 0.21 0.13 
27 0.40 0.26 

Sum 4.82 4.01 
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TABLE B.6. PARTIAL SORT MODIFICATION--RELAX-II(PS) 
This variation of RELAX-II compresses the DFCf array by removing all zeros. As node 
deficits become nonzero they are added to the end of DFCT, and as they become zero 
DFCf is compressed. A local search of breadth NIT is conducted within DFCT for each 
relaxation iteration to find the node with maximum absolute deficit. The optimal value of 
NIT changes with each problem solved, and there does not appear to be any way of 
pridicting its value ahead of time based on network characteristics. This Table contains the 
optimal NTT values for each NETGEN and VSNET problem, along with both RELAX­
Il(PS) and RELAX-II running times. 

NETGEN NTT Running Baseline NETGEN NTT Running Baseline 
Num. Time RELAXII Num. Time RELAXII 

1 5 0.18 0.18 28 2 0.54 0.73 
2 1 0 0.25 0.26 29 5 0.68 0.81 
3 1 0 0.29 0.26 30 1 5 0.95 1.25 
4 1 0 0.43 0.48 31 1 2 0. 71 0.84 
5 1 2 0.36 0.33 32 9 1.08 1 . 1 1 

Sum 1.50 1.51 33 5 1.32 1 .49 
6 1 0 0.71 0.48 34 1 7 0.91 0.82 
7 7 0.63 0.61 35 1 5 1 . 1 7 1 .31 
8 1 1 0.73 0. 71 Sum 7.36 8.35 
9 8 0.77 0.63 36 1 5 24.84 30.24 
1 0 1 1 0.80 0. 71 37 1 0 10.04 13.68 

Sum 3.63 3.14 38 DNR DNR 8.99 
1 1 3 0.18 0.12 39 0 11 . 1 8 8.72 
1 2 4 0.22 0.14 40 5 2.23 5.51 
1 3 1 0 0.28 0.24 Sum 48.29 67.13 
1 4 1 3 0.38 0.23 VSNET NTT Running Baseline 
1 5 1 6 0.57 0.45 Num. Time VSNET 

Sum 1.63 1.19 1 4 3.24 4.98 
1 6 1 6 0.29 0.26 2 1 0 9.13 11 .42 
1 7 1 3 0.42 0.37 3 1 0 56.21 69.44 
1 8 1 4 0.29 0.31 4 7 2.73 3.75 
1 9 1 1 0.45 0.34 5 5 4.74 4.04 
20 1 1 0.31 0.34 6 4 24.84 27.26 
21 1 0 0.46 0.43 Sum 100.88 120.88 
22 9 0.35 0.32 DNR: Did Not Run 

23 1 2 0.42 0.60 
24 7 0.20 0.18 
25 1 0 0.48 0.46 
26 1 1 0.14 0.13 
27 7 0.27 0.26 

Sum 4.08 4.01 
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